Skip to main content

Ant-SNE: Tracking Community Evolution via Animated t-SNE

  • Conference paper
  • First Online:
Book cover Advances in Visual Computing (ISVC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11844))

Included in the following conference series:

Abstract

We introduce a method for tracking the community evolution and a prototype (Ant-SNE) for analyzing multivariate time series and guiding interactive exploration through high-dimensional data. The method is based on t-distributed Stochastic Neighbor Embedding (t-SNE), a machine learning algorithm for nonlinear dimension reduction well-suited for embedding high-dimensional data for visualization in a low-dimensional space of two or three dimensions. By tracking the evolution of temporal multivariate data points, we are able to locate unusual behaviors (outliers) and interesting sub-series for further analysis. In the experiments, we conducted two case studies with the US employment dataset and the HPC health status dataset in order to confirm the effectiveness of the proposed system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bach, B., Henry-Riche, N., Dwyer, T., Madhyastha, T., Fekete, J.D., Grabowski, T.: Small MultiPiles: piling time to explore temporal patterns in dynamic networks. Comput. Graph. Forum. 34, 31–40 (2015)

    Article  Google Scholar 

  2. Bach, B., Pietriga, E., Fekete, J.D.: Visualizing dynamic networks with matrix cubes. In: Proceedings of ACM Conference on Human Factors in Computing Systems, pp. 877–886 (2014)

    Google Scholar 

  3. Beck, F., Burch, M., Vehlow, C., Diehl, S., Weiskopf, D.: Rapid serial visual presentation in dynamic graph visualization. In: Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing, pp. 185–192 (2012)

    Google Scholar 

  4. Beck, F., Burch, M., Diehl, S., Weiskopf, D.: A taxonomy and survey of dynamic graph visualization. Comput. Graph. Forum 36, 133–159 (2016)

    Article  Google Scholar 

  5. Becker, R.A., Eick, S.G., Wilks, A.R.: Visualizing network data. IEEE Trans. Visual. Comput. Graph. 1(1), 16–28 (1995)

    Article  Google Scholar 

  6. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing Systems, pp. 585–591 (2002)

    Google Scholar 

  7. Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE Trans. Vis. Comput. Graph. 17(12), 2301–2309 (2011)

    Article  Google Scholar 

  8. Brandes, U., Nick, B.: Asymmetric relations in longitudinal social networks. IEEE Trans. Vis. Comput. Graph. 17(12), 2283–2290 (2011). https://doi.org/10.1109/TVCG.2011.169

    Article  Google Scholar 

  9. Burch, M., Vehlow, C., Beck, F., Diehl, S., Weiskopf, D.: Parallel edge splatting for scalable dynamic graph visualization. IEEE Trans. Vis. Comput. Graph. 17(12), 2344–2353 (2011). https://doi.org/10.1109/TVCG.2011.226

    Article  Google Scholar 

  10. Burch, M., Beck, F., Weiskopf, D.: Radial edge splatting for visualizing dynamic directed graphs. In: Proceedings of International Conference on Information Visualization and Applications, pp. 603–612 (2012)

    Google Scholar 

  11. Cai, Z., Jermaine, C.: The latent community model for detecting sybils in social networks. In: NDSS (2012)

    Google Scholar 

  12. Chernoff, H., Association, S., Jun, N.: The Use of Faces to Represent Points in K-Dimensional Space Graphically 68(342), 361–368 (2007)

    Google Scholar 

  13. Dang, T.N., Wilkinson, L.: TimeExplorer: similarity search time series by their signatures. In: Bebis, G., et al. (eds.) ISVC 2013. LNCS, vol. 8033, pp. 280–289. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41914-0_28

    Chapter  Google Scholar 

  14. Dang, T.N., Anand, A., Wilkinson, L.: TimeSeer: scagnostics for high-dimensional time series. IEEE Trans. Vis. Comput. Graph. 19(3), 470–483 (2013). https://doi.org/10.1109/TVCG.2012.128

    Article  Google Scholar 

  15. Dang, T.N., Cui, H., Forbes, A.G.: MultiLayerMatrix: visualizing large taxonomic datasets. In: Andrienko, N., Sedlmair, M. (eds.) EuroVis Workshop on Visual Analytics (EuroVA). The Eurographics Association (2016). https://doi.org/10.2312/eurova.20161125

  16. Dang, T.N., Franz, N., Ludäscher, B., Forbes, A.G.: ProvenanceMatrix: a visualization tool for multi-taxonomy alignments. In: Proceedings of the ISWC Workshop on Visualization and User Interfaces for Ontologies and Linked Data (VOILA), vol. 1456, pp. 13–24. CEUR Workshop Proceedings (2015)

    Google Scholar 

  17. Dang, T.N., Murray, P., Forbes, A.G.: PathwayMatrix: visualizing binary relationships between proteins in biological pathways. BMC Proc. 9(6), S3 (2015)

    Article  Google Scholar 

  18. Demartines, P., Hérault, J.: Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets. IEEE Trans. Neural Networks 8(1), 148–154 (1997)

    Article  Google Scholar 

  19. Ghoniem, M., Fekete, J.D., Castagliola, P.: On the readability of graphs using node-link and matrix-based representations: a controlled experiment and statistical analysis. Inf. Vis. 4(2), 114–135 (2005). https://doi.org/10.1057/palgrave.ivs.9500092

  20. Greilich, M., Burch, M., Diehl, S.: Visualizing the evolution of compound digraphs with TimeArcTrees. In: Proceedings of Eurographics Conference on Visualization, pp. 975–990 (2009). https://doi.org/10.1111/j.1467-8659.2009.01451.x

  21. Henry, N., Fekete, J.D.: MatrixExplorer: a dual-representation system to explore social networks. IEEE Trans. Vis. Comput. Graph. 12(5), 677–684 (2006). https://doi.org/10.1109/TVCG.2006.160

    Article  Google Scholar 

  22. Hinton, G.E., Roweis, S.T.: Stochastic neighbor embedding. In: Advances in Neural Information Processing Systems, pp. 857–864 (2003)

    Google Scholar 

  23. Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24(6), 417 (1933)

    Article  Google Scholar 

  24. Inselberg, A., Dimsdale, B.: Parallel coordinates: a tool for visualizing multi-dimensional geometry. In: Proceedings of the 1st Conference on Visualization 1990, pp. 361–378. IEEE Computer Society Press (1990)

    Google Scholar 

  25. Keim, D.A.: Designing Pixel-Oriented Visualization Techniques: Theory and Applications 6(1), 59–78 (2000)

    Google Scholar 

  26. Keller, R., Eckert, C.M., Clarkson, P.J.: Matrices or node-link diagrams: which visual representation is better for visualising connectivity models? Inf. Vis. 5(1), 62–76 (2006). https://doi.org/10.1057/palgrave.ivs.9500116

    Article  Google Scholar 

  27. Kim, N.W., Card, S.K., Heer, J.: Tracing genealogical data with timenets. In: Proceedings of International Conference on Advanced Visual Interfaces, pp. 241–248 (2010). https://doi.org/10.1145/1842993.1843035

  28. LeBlanc, J., Ward, M.O., Wittels, N.: Exploring n-dimensional databases. In: Proceedings of the 1st Conference on Visualization 1990, pp. 230–237. IEEE Computer Society Press (1990)

    Google Scholar 

  29. Liu, S., Wu, Y., Wei, E., Liu, M., Liu, Y.: StoryFlow: tracking the evolution of stories. IEEE Trans. Vis. Comput. Graph. 19(12), 2436–2445 (2013). https://doi.org/10.1109/TVCG.2013.196

    Article  Google Scholar 

  30. Ma, C., Kenyon, R.V., Forbes, A.G., Berger-Wolf, T., Slater, B.J., Llano, D.A.: Visualizing dynamic brain networks using an animated dual-representation. In: Proceedings of Eurographics Conference on Visualization, pp. 73–77 (2015)

    Google Scholar 

  31. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004). https://doi.org/10.1103/PhysRevE.69.026113

    Article  Google Scholar 

  32. Nguyen, M., Purushotham, S., To, H., Shahabi, C., Angeles, L.: m-TSNE : A Framework for Visualizing High-Dimensional Multivariate Time Series (2017)

    Google Scholar 

  33. Rauber, P.E., Falcão, A.X., Telea, A.C.: Visualizing time-dependent data using dynamic t-SNE. In: Proceedings of the Eurographics/IEEE VGTC Conference on Visualization: Short Papers, EuroVis 2016, Eurographics Association, Goslar Germany, pp. 73–77 (2016). https://doi.org/10.2312/eurovisshort.20161164

  34. Reda, K., Tantipathananandh, C., Johnson, A., Leigh, J., Berger-Wolf, T.: Visualizing the evolution of community structures in dynamic social networks. In: Proceedings of Eurographics Conference on Visualization, pp. 1061–1070 (2011)

    Google Scholar 

  35. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  36. Sammon, J.W.: A nonlinear mapping for data structure analysis. IEEE Trans. Comput. 100(5), 401–409 (1969)

    Article  Google Scholar 

  37. Shneiderman, B.: Tree Visualization with Tree-Maps : 2-d Space-Filling Approach 11(1), 92–99 (1992)

    Google Scholar 

  38. Tanahashi, Y., Ma, K.L.: Design considerations for optimizing storyline visualizations. IEEE Trans. Vis. Comput. Graph. 18(12), 2679–2688 (2012). https://doi.org/10.1109/TVCG.2012.212

    Article  Google Scholar 

  39. Tantipathananandh, C., Berger-Wolf, T.Y.: Finding communities in dynamic social networks. In: 2011 IEEE 11th International Conference on Data Mining, pp. 1236–1241, December 2011. https://doi.org/10.1109/ICDM.2011.67

  40. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  41. Torgerson, W.S.: Multidimensional scaling: I. theory and method. Psychometrika 17(4), 401–419 (1952)

    Google Scholar 

  42. Van Der Maaten, L., Hinton, G.: Visualizing Data using t-SNE 9, 2579–2605 (2008)

    Google Scholar 

  43. Van der Walt, S., Smith, N.: mpl colormaps (2015). http://bids.github.io/colormap

  44. Ward, M., Grinstein, G., Keim, D.: Interactive Data Visualization: Foundations, Techniques, and Applications. A. K. Peters, Ltd., Natick (2010)

    Book  Google Scholar 

  45. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Structural Analysis in the Social Sciences. Cambridge University Press, New York (1994). https://doi.org/10.1017/CBO9780511815478

  46. Weinberger, K.Q., Sha, F., Saul, L.K.: Learning a kernel matrix for nonlinear dimensionality reduction. In: Proceedings of The Twenty-first International Conference on Machine Learning, p. 106. ACM (2004)

    Google Scholar 

  47. Yang, K., Shahabi, C.: A PCA-based similarity measure for multivariate time series. In: Proceedings of the 2nd ACM International Workshop on Multimedia Databases, pp. 65–74. ACM (2004)

    Google Scholar 

  48. Yi, J.S., Elmqvist, N., Seungyoon, L.: TimeMatrix: analyzing temporal social networks using interactive matrix-based visualizations. Int. J. Hum. Comput. Int. 26(11–12), 1031–1051 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngan V. T. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, N.V.T., Dang, T. (2019). Ant-SNE: Tracking Community Evolution via Animated t-SNE. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2019. Lecture Notes in Computer Science(), vol 11844. Springer, Cham. https://doi.org/10.1007/978-3-030-33720-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33720-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33719-3

  • Online ISBN: 978-3-030-33720-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics