Skip to main content

A Hierarchical Classification Method Used to Classify Livestock Behaviour from Sensor Data

  • Conference paper
  • First Online:
Multi-disciplinary Trends in Artificial Intelligence (MIWAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11909))

Abstract

One of the fundamental tasks in the management of livestock is to understand their behaviour and use this information to increase livestock productivity and welfare. Developing new and improved methods to classify livestock behaviour based on their daily activities can greatly improve livestock management. In this paper, we propose the use of a hierarchical machine learning method to classify livestock behaviours. We first classify the livestock behaviours into two main behavioural categories. Each of the two categories is then broken down at the next level into more specific behavioural categories. We have tested the proposed methodology using two commonly used classifiers, Random Forest, Support Vector Machine and a newer approach involving Deep Belief Networks. Our results show that the proposed hierarchical classification technique works better than the conventional approach. The experimental studies also show that Deep Belief Networks perform better than the Random Forest and Support Vector Machine for most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manning, L.: What is Ag Big Data? (2015). https://agfundernews.com/what-is-ag-big-data5041.html

  2. Carvalho, P.: Can grazing behavior support innovations in grassland management. Tropical Grasslands-Forrajes Tropicales 1, 137–155 (2013)

    Article  Google Scholar 

  3. Rushen, J., Chapinal, N., De Passille, A.: Automated monitoring of behavioural-based animal welfare indicators. Anim. Welfare UFAW J. 21, 339 (2012)

    Article  Google Scholar 

  4. Van Hertem, T., Lague. S., Rooijakkers, L., Vranken, E.: Towards a sustainable meat production with precision livestock farming. In: Proceedings in Food System Dynamics, pp. 357–362 (2016)

    Google Scholar 

  5. Manning, J.K., et al.: The effects of global navigation satellite system (GNSS) collars on cattle (Bos taurus) behaviour. Appl. Anim. Behav. Sci. 187, 54–59 (2017). https://doi.org/10.1016/j.applanim.2016.11.013

    Article  Google Scholar 

  6. Williams, M., et al.: A novel behavioral model of the pasture-based dairy cow from GPS data using data mining and machine learning techniques. J. Dairy Sci. 99, 2063–2075 (2016). https://doi.org/10.3168/jds.2015-10254

    Article  Google Scholar 

  7. González, L., Bishop-Hurley, G., Handcock, R., Crossman, C.: Behavioral classification of data from collars containing motion sensors in grazing cattle. Comput. Electron. Agric. 110, 91–102 (2015). https://doi.org/10.1016/j.compag.2014.10.018

    Article  Google Scholar 

  8. Alvarenga, F., et al.: Using a three-axis accelerometer to identify and classify sheep behaviour at pasture. Appl. Anim. Behav. Sci. (2016). https://doi.org/10.1016/j.applanim.2016.05.026

    Article  Google Scholar 

  9. Hilario, M.C., Wrage-Mönnig, N., Isselstein, J.: Behavioral patterns of (co-) grazing cattle and sheep on swards differing in plant diversity. Appl. Anim. Behav. Sci. 191, 17–23 (2017). https://doi.org/10.1016/j.applanim.2017.02.009

    Article  Google Scholar 

  10. Homburger, H., Schneider, M., Hilfiker, S., Luscher, A.: Inferring behavioral states of grazing livestock from high-frequency position data alone. PLoS ONE 9, e114522 (2014)

    Article  Google Scholar 

  11. Giovanetti, V., et al.: Automatic classification system for grazing, ruminating and resting behaviour of dairy sheep using a tri-axial accelerometer. Livestock Sci. 196, 42–48 (2017). https://doi.org/10.1016/j.livsci.2016.12.011

    Article  Google Scholar 

  12. Manning, J., et al.: The behavioural responses of beef cattle (Bos taurus) to declining pasture availability and the use of GNSS technology to determine grazing preference. Agriculture 7, 45 (2017)

    Article  Google Scholar 

  13. de Weerd, N., et al.: Deriving animal behaviour from high-frequency GPS: tracking cows in open and forested habitat. PLoS ONE 10, e0129030 (2015)

    Article  Google Scholar 

  14. Diosdado, J.A.V., et al.: Classification of behaviour in housed dairy cows using an accelerometer-based activity monitoring system. Anim. Biotelemetry 3, 15 (2015). https://doi.org/10.1186/s40317-015-0045-8

    Article  Google Scholar 

  15. Wang, G.: Machine learning for inferring animal behavior from location and movement data. Ecol. Inform. 49, 69–76 (2019). https://doi.org/10.1016/j.ecoinf.2018.12.002

    Article  Google Scholar 

  16. Wainberg, M., Alipanahi, B., Frey, B.: Are random forests truly the best classifiers? J. Mach. Learn. Res. 17, 3837–3841 (2016)

    MathSciNet  Google Scholar 

  17. Durgesh, K., Lekha, B.: Data classification using support vector machine. J. Theoret. Appl. Inf. Technol. 12, 1–7 (2010)

    Google Scholar 

  18. Hua, Y., Guo, J., Zhao, H.: Deep belief networks and deep learning. In: IEEE International Conference on Intelligent Computing and Internet of Things (ICIT) (2015)

    Google Scholar 

  19. Valletta, J., et al.: Applications of machine learning in animal behaviour studies. Anim. Behav. 124, 203–220 (2017). https://doi.org/10.1016/j.anbehav.2016.12.005

    Article  Google Scholar 

  20. Browning, E., et al.: Predicting animal behaviour using deep learning: GPS data alone accurately predict diving in seabirds. Methods Ecol. Evol. 9, 681–692 (2018). https://doi.org/10.1111/2041-210X.12926

    Article  Google Scholar 

  21. Rayas-Amor, A.A., et al.: Triaxial accelerometers for recording grazing and ruminating time in dairy cows: an alternative to visual observations. J. Vet. Behav. Clin. Appl. Res. 20, 102–108 (2017). https://doi.org/10.1016/j.jveb.2017.04.003

    Article  Google Scholar 

  22. Calenge, C., Dray, S., Royer-Carenzi, M.: The concept of animals’ trajectories from a data analysis perspective. Ecol. Inform. 4, 34–41 (2009)

    Article  Google Scholar 

  23. Chawla, N., Bowyer, K., Hall, L., Kegelmeyer, W.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by CSIRO Floreat, Western Australia. We are grateful for their cooperation and permission to use their data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Suparwito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Suparwito, H., Wong, K.W., Xie, H., Rai, S., Thomas, D. (2019). A Hierarchical Classification Method Used to Classify Livestock Behaviour from Sensor Data. In: Chamchong, R., Wong, K. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2019. Lecture Notes in Computer Science(), vol 11909. Springer, Cham. https://doi.org/10.1007/978-3-030-33709-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33709-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33708-7

  • Online ISBN: 978-3-030-33709-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics