Skip to main content

Abstract

Supervised machine learning techniques require large amounts of annotated training data to attain good performance. Active learning aims to ease the data collection process by automatically detecting which instances an expert should annotate in order to train a model as quickly and effectively as possible. Such strategies have been previously reported for medical imaging, but for other tasks than focal pathologies where there is high class imbalance and heterogeneous background appearance. In this study we evaluate different data selection approaches (random, uncertain, and representative sampling) and a semi-supervised model training procedure (pseudo-labelling), in the context of lung nodule segmentation in CT volumes from the publicly available LIDC-IDRI dataset. We find that active learning strategies allow us to train a model with equal performance but less than half of the annotation effort; data selection by uncertainty sampling offers the most gain, with the incorporation of representativeness or the addition of pseudo-labelling giving further small improvements. We conclude that active learning is a valuable tool and that further development of these strategies can play a key role in making diagnostic algorithms viable.

D. Zotova and A. Lisowska—Equal contribution

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham, J.: Reduced lung cancer mortality with low-dose computed tomographic screening. Commun. Oncol. 8(10), 441–442 (2011)

    Article  Google Scholar 

  2. Armato III, S.G., et al.: Data from lidc-idri. the cancer imaging archive (2015)

    Google Scholar 

  3. Bank, D., Greenfeld, D., Hyams, G.: Improved training for self training by confidence assessments. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) SAI 2018. AISC, vol. 858, pp. 163–173. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01174-1_13

    Chapter  Google Scholar 

  4. Becker, N., et al.: Lung cancer mortality reduction by ldct screening-results from the randomised german lusi trial. International Journal of Cancer (2019)

    Google Scholar 

  5. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: representing model uncertainty in deep learning. In: international Conference on Machine Learning, pp. 1050–1059 (2016)

    Google Scholar 

  6. Golan, R., Jacob, C., Denzinger, J.: Lung nodule detection in ct images using deep convolutional neural networks. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 243–250. IEEE (2016)

    Google Scholar 

  7. Gorriz, M., Carlier, A., Faure, E., Giro-i Nieto, X.: Cost-effective active learning for melanoma segmentation (2017). arXiv preprint arXiv:1711.09168

  8. Hua, K.L., Hsu, C.H., Hidayati, S.C., Cheng, W.H., Chen, Y.J.: Computer-aided classification of lung nodules on computed tomography images via deep learning technique. Onco Targets Therapy 8, 2015–2022 (2015)

    Google Scholar 

  9. Jesson, A., et al.: CASED: curriculum adaptive sampling for extreme data imbalance. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 639–646. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_73

    Chapter  Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). arXiv preprint arXiv:1412.6980

  11. Kohl, S.A., et al.: A hierarchical probabilistic u-net for modeling multi-scale ambiguities (2019). arXiv preprint arXiv:1905.13077

  12. Lee, D.H.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML. vol. 3, p. 2 (2013)

    Google Scholar 

  13. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence (2018)

    Google Scholar 

  14. Maaten, L.V.D., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  15. Park, S., Hwang, W., Jung, K.H.: Integrating reinforcement learning to self training for pulmonary nodule segmentation in chest x-rays. NeurIPS ML4 Health Workshop (2018)

    Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Segal, R., Miller, K., Jemal, A.: Cancer statistics (2018). https://www.ncbi.nlm.nih.gov/pubmed/29313949

  18. Settles, B.: Active learning literature survey. University of Wisconsin-Madison Department of Computer Sciences, Technical report (2009)

    Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv preprint arXiv:1409.1556

  20. Smith, L.N.: Cyclical learning rates for training neural networks. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 464–472. IEEE (2017)

    Google Scholar 

  21. Wang, K., Zhang, D., Li, Y., Zhang, R., Lin, L.: Cost-effective active learning for deep image classification. IEEE Trans. Circ. Syst. Video Technol. 27(12), 2591–2600 (2016)

    Article  Google Scholar 

  22. Yang, L., Zhang, Y., Chen, J., Zhang, S., Chen, D.Z.: Suggestive annotation: a deep active learning framework for biomedical image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 399–407. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_46

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneta Lisowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zotova, D., Lisowska, A., Anderson, O., Dilys, V., O’Neil, A. (2019). Comparison of Active Learning Strategies Applied to Lung Nodule Segmentation in CT Scans. In: Zhou, L., et al. Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for Medical Imaging and Computer Assisted Intervention. LABELS HAL-MICCAI CuRIOUS 2019 2019 2019. Lecture Notes in Computer Science(), vol 11851. Springer, Cham. https://doi.org/10.1007/978-3-030-33642-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33642-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33641-7

  • Online ISBN: 978-3-030-33642-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics