Skip to main content

Classifying Ransomware Using Machine Learning Algorithms

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2019 (IDEAL 2019)

Abstract

Ransomware is a continuing threat and has resulted in the battle between the development and detection of new techniques. Detection and mitigation systems have been developed and are in wide-scale use; however, their reactive nature has resulted in a continuing evolution and updating process. This is largely because detection mechanisms can often be circumvented by introducing changes in the malicious code and its behaviour. In this paper, we demonstrate a classification technique of integrating both static and dynamic features to increase the accuracy of detection and classification of ransomware. We train supervised machine learning algorithms using a test set and use a confusion matrix to observe accuracy, enabling a systematic comparison of each algorithm. In this work, supervised algorithms such as the Naïve Bayes algorithm resulted in an accuracy of 96% with the test set result, SVM 99.5%, random forest 99.5%, and 96%. We also use Youden’s index to determine sensitivity and specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Didier Steven’s script available at: https://blog.didierstevens.com/programs/virustotal-tools/.

References

  1. A. Kumar, K.S.K., Aghila, G.: A learning model to detect maliciousness of portable executable using integrated feature set. J. King Saud Univ. - Comput. Inf. Sci. (2017)

    Google Scholar 

  2. Mohaisen, A., Alrawi, O., Mohaisen, M.: Amal: high-fidelity, behavior-based automated malware analysis and classification. Comput. Secur. 52, 251–266 (2015)

    Article  Google Scholar 

  3. Alazab, M.: Profiling and classifying the behavior of malicious codes. J. Syst. Softw. 100, 91–102 (2015)

    Article  Google Scholar 

  4. Shahzad, F., Shahzad, M., Farooq, M.: In-execution dynamic malware analysis and detection by mining information in process control blocks of linux OS. Inf. Sci. (Ny) 231, 45–63 (2013)

    Article  Google Scholar 

  5. Gatz, D.F., Smith, L.: The standard error of a weighted mean concentration-i. Bootstrapping vs other methods. Atmos. Environ. 29(11), 1185–1193 (1995)

    Article  Google Scholar 

  6. Grant, L., Parkinson, S.: Identifying file interaction patterns in ransomware behaviour. In: Parkinson, S., Crampton, A., Hill, R. (eds.) Guide to Vulnerability Analysis for Computer Networks and Systems. CCN, pp. 317–335. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92624-7_14

    Chapter  Google Scholar 

  7. Lu, H., Wang, X., Zhao, B., Wang, F., Su, J.: Endmal: an anti-obfuscation and collaborative malware detection system using syscall sequences. Math. Comput. Model. 58(5), 1140–1154 (2013)

    Article  Google Scholar 

  8. Zhang, H., Xiao, X., Mercaldo, F., Ni, S., Martinelli, F., Sangaiah, A.K.: Classification of ransomware families with machine learning based on n-gram of opcodes. Futur. Gener. Comput. Syst. 90, 211–221 (2019)

    Article  Google Scholar 

  9. Islam, R., Tian, R., Batten, L.M., Versteeg, S.: Classification of malware based on integrated static and dynamic features. J. Network Comput. Appl. 36(2), 646–656 (2013)

    Article  Google Scholar 

  10. Deepa, K., Radhamani, G., Vinod, P.: Investigation of feature selection methods for android malware analysis. Procedia Comput. Sci. 46, 841–848 (2015)

    Article  Google Scholar 

  11. Sun, M., Li, X., Lui, J.C., Ma, R.T., Liang, Z.: Monet: a user-oriented behavior-based malware variants detection system for android. IEEE Trans. Inf. Forensics Secur. 12(5), 1103–1112 (2017)

    Article  Google Scholar 

  12. Milosevic, N., Dehghantanha, A., Choo, K.K.R.: Machine learning aided android malware classification. Comput. Electr. Eng. 61, 266–274 (2017)

    Article  Google Scholar 

  13. Burnap, P., French, R., Turner, F., Jones, K.: Malware classification using self organising feature maps and machine activity data. Comput. Secur. 73, 399–410 (2018)

    Article  Google Scholar 

  14. Patil, T.R., Sherekar, M.S.S.: Performance analysis of naive bayes and j48 classification algorithm for data classification. Int. J. Comput. Sci. Appl. 6(2), 256–261 (2013)

    Google Scholar 

  15. Provataki, A., Katos, V.: Differential malware forensics. Digit. Investig. 10(4), 311–322 (2013)

    Article  Google Scholar 

  16. Das, S., Liu, Y., Zhang, W., Chandramohan, M.: Semantics-based online malware detection: towards efficient real-time protection against malware. IEEE Trans. Inf. Forensics Secur. 11(2), 289–302 (2016)

    Article  Google Scholar 

  17. Schultz, M.G., Eskin, E., Zadok, F., Stolfo, S.J.: Data mining methods for detection of new malicious executables. In: Proceedings 2001 IEEE Symposium on Security and Privacy, S&P 2001, pp. 38–49. IEEE (2000)

    Google Scholar 

  18. Sharma, A., Sahay, S.K.: An effective approach for classification of advanced malware with high accuracy. arXiv preprint arXiv:1606.06897 (2016)

  19. Shijo, P.V., Salim, A.: Integrated static and dynamic analysis for malware detection. Procedia Comput. Sci. 46, 804–811 (2015)

    Article  Google Scholar 

  20. Townsend, J.T.: Theoretical analysis of an alphabetic confusion matrix* (1971)

    Google Scholar 

  21. Zhang, H.: The optimality of naive bayes

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samuel Egunjobi , Simon Parkinson or Andrew Crampton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Egunjobi, S., Parkinson, S., Crampton, A. (2019). Classifying Ransomware Using Machine Learning Algorithms. In: Yin, H., Camacho, D., Tino, P., Tallón-Ballesteros, A., Menezes, R., Allmendinger, R. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2019. IDEAL 2019. Lecture Notes in Computer Science(), vol 11872. Springer, Cham. https://doi.org/10.1007/978-3-030-33617-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33617-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33616-5

  • Online ISBN: 978-3-030-33617-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics