Skip to main content

Isogeometric Analysis of Solids in Boundary Representation

  • Chapter
  • First Online:
Novel Finite Element Technologies for Solids and Structures

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 597))

Abstract

In this chapter, we present boundary-oriented numerical methods to analyze three-dimensional solid structures. For the analysis, the original geometry of the solid is employed according to the isogeometric paradigm. For the parametrization of the domain, the idea of the scaled boundary finite element method is adopted. Hence, the boundary of the solid is sufficient to describe the entire domain. The presented approaches employ analytical and numerical solution methods such as the Galerkin and collocation methods. To illustrate the applicability in the analysis procedure, three formulations are elaborated and demonstrated by means of numerical examples. The advantages compared to standard numerical methods are discussed thoroughly.

The financial support of the German Research Foundation (DFG) under Grant No. KL1345/10-1 is gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abaqus. (2001). 6.7. User’s manual. Dassault Systemes.

    Google Scholar 

  • Apostolatos, A., Schmidt, R., Wüchner, R., & Bletzinger, K. U. (2014). A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis. International Journal for Numerical Methods in Engineering, 97(7), 473–504.

    Article  MathSciNet  Google Scholar 

  • Auricchio, F., da Veiga, L. B., Hughes, T. J. R., Reali, A., & Sangalli, G. (2010). Isogeometric collocation methods. Mathematical Models and Methods in Applied Sciences, 20(11), 2075–2107.

    Article  MathSciNet  Google Scholar 

  • Auricchio, F., da Veiga, L. B., Hughes, T. J. R., Reali, A., & Sangalli, G. (2012). Isogeometric collocation for elastostatics and explicit dynamics. Computer Methods in Applied Mechanics and Engineering, 249, 2–14.

    Article  MathSciNet  Google Scholar 

  • Bazilevs, Y., Long, C. C., Akkerman, I., Benson, D. J., & Shashkov, M. J. (2014). Isogeometric analysis of lagrangian hydrodynamics: Axisymmetric formulation in the rz-cylindrical coordinates. Journal of Computational Physics, 262, 244–261.

    Article  MathSciNet  Google Scholar 

  • Behnke, R., Mundil, M., Birk, C., & Kaliske, M. (2014). A physically and geometrically nonlinear scaled-boundary-based finite element formulation for fracture in elastomers. International Journal for Numerical Methods in Engineering, 99, 966–999.

    Article  MathSciNet  Google Scholar 

  • Breitenberger, M., Apostolatos, A., Philipp, B., Wüchner, R., & Bletzinger, K. U. (2015). Analysis in computer aided design: Nonlinear isogeometric B-Rep analysis of shell structures. Computer Methods in Applied Mechanics and Engineering, 284, 401–457.

    Article  MathSciNet  Google Scholar 

  • Chasapi, M., & Klinkel, S. (2018). A scaled boundary isogeometric formulation for the elasto-plastic analysis of solids in boundary representation. Computer Methods in Applied Mechanics and Engineering, 333, 475–496.

    Article  MathSciNet  Google Scholar 

  • Chen, L., Dornisch, W., & Klinkel, S. (2015). Hybrid collocation-Galerkin approach for the analysis of surface represented 3D-solids employing SB-FEM. Computer Methods in Applied Mechanics and Engineering, 295, 268–289.

    Article  MathSciNet  Google Scholar 

  • Chen, L., Simeon, B., & Klinkel, S. (2016). A NURBS based Galerkin approach for the analysis of solids in boundary representation. Computer Methods in Applied Mechanics and Engineering, 305, 777–805.

    Article  MathSciNet  Google Scholar 

  • Cottrell, J. A., Hughes, T. J. R., & Bazilevs, Y. (2009). Isogeometric analysis: Toward integration of CAD and FEA. John Wiley & Sons.

    Google Scholar 

  • De Lorenzis, L., Evans, J. A., Hughes, T. J. R., & Reali, A. (2015). Isogeometric collocation: Neumann boundary conditions and contact. Computer Methods in Applied Mechanics and Engineering, 282, 21–54.

    Article  MathSciNet  Google Scholar 

  • Dornisch, W., Klinkel, S., & Simeon, B. (2013). Isogeometric Reissner-Mindlin shell analysis with exactly calculated director vectors. Computer Methods in Applied Mechanics and Engineering, 253, 491–504.

    Article  MathSciNet  Google Scholar 

  • Dornisch, W., Vitucci, G., & Klinkel, S. (2015). The weak substitution method - an application of the mortar method for patch coupling in NURBS-based isogeometric analysis. International Journal for Numerical Methods in Engineering, 103, 205–234.

    Article  MathSciNet  Google Scholar 

  • Düster, A., Parvizian, J., Yang, Z., & Rank, E. (2008). The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering, 197(45), 3768–3782.

    Article  MathSciNet  Google Scholar 

  • Gomez, H., & De Lorenzis, L. (2016). The variational collocation method. Computer Methods in Applied Mechanics and Engineering, 309, 152–181.

    Article  MathSciNet  Google Scholar 

  • Hughes, T. J. R. (2000). The finite element method: Linear static and dynamic finite element analysis. Courier Dover Publications.

    Google Scholar 

  • Hughes, T. J. R., Cottrell, J. A., & Bazilevs, Y. (2005). Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194, 4135–4195.

    Article  MathSciNet  Google Scholar 

  • Hughes, T. J. R., Reali, A., & Sangalli, G. (2010). Efficient quadrature for NURBS-based isogeometric analysis: Computational Geometry and Analysis. Computer Methods in Applied Mechanics and Engineering, 199, 301–313.

    Article  MathSciNet  Google Scholar 

  • Kiendl, J., Auricchio, F., da Veiga, L. B., Lovadina, C., & Reali, A. (2015). Isogeometric collocation methods for the Reissner-Mindlin plate problem. Computer Methods in Applied Mechanics and Engineering, 284, 489–507.

    Article  MathSciNet  Google Scholar 

  • Klinkel, S., Chen, L., & Dornisch, W. (2015). A NURBS based hybrid collocation-Galerkin method for the analysis of boundary represented solids. Computer Methods in Applied Mechanics and Engineering, 284, 689–711.

    Article  MathSciNet  Google Scholar 

  • Lin, G., Zhang, Y., Hu, Z., & Zhong, H. (2014). Scaled boundary isogeometric analysis for 2D elastostatics. Science China Physics, Mechanics and Astronomy, 57(3), 286–300.

    Article  Google Scholar 

  • Lin, Z., & Liao, S. (2011). The scaled boundary FEM for nonlinear problems. Communications in Nonlinear Science and Numerical Simulation, 16(1), 63–75.

    Article  MathSciNet  Google Scholar 

  • Natarajan, S., Wang, J. C., Song, C., & Birk, C. (2015). Isogeometric analysis enhanced by the scaled boundary finite element method. Computer Methods in Applied Mechanics and Engineering, 283, 733–762.

    Article  MathSciNet  Google Scholar 

  • Ooi, E., Song, C., & Tin-Loi, F. (2014). A scaled boundary polygon formulation for elasto-plastic analyses. Computer Methods in Applied Mechanics and Engineering, 268, 905–937.

    Article  MathSciNet  Google Scholar 

  • Piegl, L. & Tiller, W. (1997). The NURBS book. Monographs in visual communications. Springer.

    Google Scholar 

  • Rank, E., Ruess, M., Kollmannsberger, S., Schillinger, D., & Düster, A. (2012). Geometric modeling, isogeometric analysis and the finite cell method. Computer Methods in Applied Mechanics and Engineering, 249, 104–115.

    Article  Google Scholar 

  • Reali, A., & Gomez, H. (2015). An isogeometric collocation approach for Bernoulli-Euler beams and Kirchhoff plates. Computer Methods in Applied Mechanics and Engineering, 284, 623–636.

    Article  MathSciNet  Google Scholar 

  • Ruess, M., Schillinger, D., Özcan, A. I., & Rank, E. (2014). Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries. Computer Methods in Applied Mechanics and Engineering, 269, 46–71.

    Article  MathSciNet  Google Scholar 

  • Schillinger, D., Evans, J. A., Reali, A., Scott, M. A., & Hughes, T. J. R. (2013). Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations. Computer Methods in Applied Mechanics and Engineering, 267, 170–232.

    Article  MathSciNet  Google Scholar 

  • Schmidt, R., Wüchner, R., & Bletzinger, K. U. (2012). Isogeometric analysis of trimmed NURBS geometries. Computer Methods in Applied Mechanics and Engineering, 241–244, 93–111.

    Article  MathSciNet  Google Scholar 

  • Song, C. (2004). A matrix function solution for the scaled boundary finite-element equation in statics. Computer Methods in Applied Mechanics and Engineering, 193(23), 2325–2356.

    Article  MathSciNet  Google Scholar 

  • Song, C., & Wolf, J. P. (1997). The scaled boundary finite-element method–alias consistent infinitesimal finite-element cell method–for elastodynamics. Computer Methods in Applied Mechanics and Engineering, 147, 329–355.

    Article  MathSciNet  Google Scholar 

  • Song, C., & Wolf, J. P. (1998). The scaled boundary finite-element method: analytical solution in frequency domain. Computer Methods in Applied Mechanics and Engineering, 164(1–2), 249–264.

    Article  MathSciNet  Google Scholar 

  • Stroud, I. (2006). Boundary representation modelling techniques. Springer.

    Google Scholar 

  • Temizer, I., Wriggers, P., & Hughes, T. J. R. (2012). Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Computer Methods in Applied Mechanics and Engineering, 209, 115–128.

    Article  MathSciNet  Google Scholar 

  • Timoshenko, S. (1951). Theory of elasticity. Engineering societies monographs: McGraw-Hill.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Klinkel .

Editor information

Editors and Affiliations

Appendix

Appendix

The normal vectors \(\varvec{n}^\xi \), \(\varvec{n}^\eta \) and \(\varvec{n}^\zeta \) are perpendicular to the surface described by the parameters (\( \eta \),  \( \zeta \)), (\( \zeta \),  \( \xi \)) and (\( \xi \),  \( \eta \)), respectively, see Fig. 3. They are summarized as

$$\begin{aligned} \begin{aligned} \varvec{n}^\xi&= [n_{\hat{x}}^\xi ,\, n_{\hat{y}}^\xi , \,n_{\hat{z}}^\xi ]^T = {\dfrac{\hat{\varvec{x}}_s,_{\eta } \times \hat{\varvec{x}}_s,_{\zeta }}{\Vert \hat{\varvec{x}}_s,_{\eta } \times \hat{\varvec{x}}_s,_{\zeta }\Vert }} = \dfrac{\varvec{x}_s,_{\eta } \times \varvec{x}_s,_{\zeta }}{\Vert \varvec{x}_s,_{\eta } \times \varvec{x}_s,_{\zeta }\Vert } \\&= \frac{1}{g^\xi }\begin{bmatrix} {y}_s,_{\eta }{z}_s,_{\zeta }-{z}_s,_{\eta }{y}_s,_{\zeta }\\ {z}_s,_{\eta }{x}_s,_{\zeta }-{x}_s,_{\eta }{z}_s,_{\zeta }\\ {x}_s,_{\eta }{y}_s,_{\zeta }-{y}_s,_{\eta }{x}_s,_{\zeta } \end{bmatrix}, \end{aligned} \end{aligned}$$
(A.1)
$$\begin{aligned} \begin{aligned} \varvec{n}^\eta&= [n_{\hat{x}}^\eta ,\, n_{\hat{y}}^\eta , \,n_{\hat{z}}^\eta ]^T = {\dfrac{\hat{\varvec{x}}_s,_{\zeta } \times \hat{\varvec{x}}_s,_{\xi }}{\Vert \hat{\varvec{x}}_s,_{\zeta } \times \hat{\varvec{x}}_s,_{\xi }\Vert }} = \dfrac{\varvec{x}_s,_{\zeta } \times (\varvec{x}_s-\hat{\varvec{x}}_0)}{\Vert \varvec{x}_s,_{\zeta } \times (\varvec{x}_s-\hat{\varvec{x}}_0)\Vert }\\&=\frac{1}{g^\eta }\begin{bmatrix} (z_s-\hat{z}_0){y}_s,_{\zeta }-({y}_s-\hat{y}_0){z}_s,_{\zeta }\\ (x_s-\hat{x}_0){z}_s,_{\zeta }-({z}_s-\hat{z}_0){x}_s,_{\zeta }\\ ({y}_s-\hat{y}_0){x}_s,_{\zeta }-({x}_s-\hat{x}_0){y}_s,_{\zeta } \end{bmatrix}, \end{aligned} \end{aligned}$$
(A.2)
$$\begin{aligned} \begin{aligned} \varvec{n}^\zeta&= [n_{\hat{x}}^\zeta ,\, n_{\hat{y}}^\zeta , \,n_{\hat{z}}^\zeta ]^T = {\dfrac{\hat{\varvec{x}}_s,_{\xi } \times \hat{\varvec{x}}_s,_{\eta }}{\Vert \hat{\varvec{x}}_s,_{\xi } \times \hat{\varvec{x}}_s,_{\eta }\Vert }} = \dfrac{(\varvec{x}_s-\hat{\varvec{x}}_0) \times \varvec{x}_s,_{\eta }}{\Vert (\varvec{x}_s-\hat{\varvec{x}}_0) \times \varvec{x}_s,_{\eta }\Vert }\\&= \frac{1}{g^\zeta }\begin{bmatrix} (y_s-\hat{y}_0){z}_s,_{\eta }-({z}_s-\hat{z}_0){y}_s,_{\eta }\\ (z_s-\hat{z}_0){x}_s,_{\eta }-({x}_s-\hat{x}_0){z}_s,_{\eta }\\ ({x}_s-\hat{x}_0){y}_s,_{\eta }-({y}_s-\hat{y}_0){x}_s,_{\eta } \end{bmatrix} \end{aligned} \end{aligned}$$
(A.3)

where \(g^\xi \), \(g^\eta \) and \(g^\eta \) are considered according to Chen et al. (2015, 2016). The transformation of an infinitesimal surface element \({\text {d}}S\) is derived by employing Eqs. (1) and (A.1)–(A.3) as

$$\begin{aligned} {\text {d}}S^\xi&=|\hat{\varvec{x}}_s,_{\eta } \times \hat{\varvec{x}}_s,_{\zeta }|{\text {d}}\eta {\text {d}}\zeta =|\xi \varvec{x}_s,_{\eta } \times \xi \varvec{x}_s,_{\zeta }|{\text {d}}\eta {\text {d}}\zeta =\xi ^2g^\xi {\text {d}}\eta {\text {d}}\zeta , \end{aligned}$$
(A.4)
$$\begin{aligned} {\text {d}}S^\eta&=|\hat{\varvec{x}}_s,_{\zeta } \times \hat{\varvec{x}}_s,_{\xi }|{\text {d}}\zeta {\text {d}}\xi =|\xi \varvec{x}_s,_{\zeta } \times (\varvec{x}_s-\hat{\varvec{x}}_0)|{\text {d}}\zeta {\text {d}}\xi =\xi g^\eta {\text {d}}\zeta {\text {d}}\xi , \end{aligned}$$
(A.5)
$$\begin{aligned} {\text {d}}S^\zeta&=|\hat{\varvec{x}}_s,_{\xi } \times \hat{\varvec{x}}_s,_{\eta }|{\text {d}}\xi {\text {d}}\eta =|(\varvec{x}_s-\hat{\varvec{x}}_0) \times \xi \varvec{x}_s,_{\eta }|{\text {d}}\xi {\text {d}}\eta =\xi g^\zeta {\text {d}}\xi {\text {d}}\eta . \end{aligned}$$
(A.6)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klinkel, S., Chasapi, M. (2020). Isogeometric Analysis of Solids in Boundary Representation. In: Schröder, J., de Mattos Pimenta, P. (eds) Novel Finite Element Technologies for Solids and Structures. CISM International Centre for Mechanical Sciences, vol 597. Springer, Cham. https://doi.org/10.1007/978-3-030-33520-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33520-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33519-9

  • Online ISBN: 978-3-030-33520-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics