Skip to main content

Weighted K-Means Clustering with Observation Weight for Single-Cell Epigenomic Data

  • Chapter
  • First Online:
Statistical Modeling in Biomedical Research

Part of the book series: Emerging Topics in Statistics and Biostatistics ((ETSB))

  • 1516 Accesses

Abstract

The recent advances in single-cell technologies have enabled us to profile genomic features at unprecedented resolution. Nowadays, we can measure multiple types of genomic features at single-cell resolution, including gene expression, protein-binding, methylation, and chromatin accessibility. One major goal in single-cell genomics is to identify and characterize novel cell types, and clustering methods are essential for this goal. The distinct characteristics in single-cell genomic datasets pose challenges for methodology development. In this work, we propose a weighted K-means algorithm. Through down-weighting cells with low sequencing depth, we show that the proposed algorithm can lead to improved detection of rare cell types in analyzing single-cell chromatin accessibility data. The weight of noisy cells is tuned adaptively. In addition, we incorporate sparsity constraints in our proposed method for simultaneous clustering and feature selection. We also evaluated our proposed methods through simulation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The Human Cell Atlas Participants. (2017). Science forum: The human cell atlas. Elife, 6, e27041.

    Article  Google Scholar 

  2. Rotem, A., Ram, O., Shoresh, N., Sperling, R. A., Goren, A., Weitz, D. A., et al. (2015). Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nature Biotechnology, 33(11), 1165.

    Article  Google Scholar 

  3. Smallwood, S. A., Lee, H. J., Angermueller, C., Krueger, F., Saadeh, H., Peat, J., et al. (2014). Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nature Methods, 11(8), 817.

    Article  Google Scholar 

  4. Buenrostro, J. D., Wu, B., Litzenburger, U. M., Ruff, D., Gonzales, M. L., Snyder, M. P., et al. (2015). Single-cell chromatin accessibility reveals principles of regulatory variation. Nature, 523(7561), 486–490.

    Article  Google Scholar 

  5. Cusanovich, D. A., Daza, R., Adey, A., Pliner, H. A., Christiansen, L., Gunderson, K. L., et al. (2015). Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science, 348(6237), 910–914.

    Article  Google Scholar 

  6. Xu, C., & Su, Z. (2015). Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics, 31(12), 1974–1980

    Article  Google Scholar 

  7. Yau, C. (2016). pcaReduce: Hierarchical clustering of single cell transcriptional profiles. BMC Bioinformatics, 17(1), 140.

    Google Scholar 

  8. Grün, D., Muraro, M. J., Boisset, J. C., Wiebrands, K., Lyubimova, A., Dharmadhikari, G., et al. (2016). De novo prediction of stem cell identity using single-cell transcriptome data. Cell Stem Cell, 19(2), 266–277.

    Article  Google Scholar 

  9. Kiselev, V. Y., Kirschner, K., Schaub, M. T., Andrews, T., Yiu, A., Chandra, T., et al. (2017). SC3: Consensus clustering of single-cell RNA-seq data. Nature Methods, 14(5), 483.

    Article  Google Scholar 

  10. Lin, P., Troup, M., & Ho, J. W. (2017). CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data. Genome Biology, 18(1), 59.

    Article  Google Scholar 

  11. Wang, B., Zhu, J., Pierson, E., Ramazzotti, D., & Batzoglou, S. (2017). Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nature Methods, 14(4), 414.

    Article  Google Scholar 

  12. Jiang, H., Sohn, L. L., Huang, H., & Chen, L. (2018). Single cell clustering based on cell-pair differentiability correlation and variance analysis. Bioinformatics, 34(21), 3684–3694.

    Google Scholar 

  13. Yang, Y., Huh, R., Culpepper, H. W., Lin, Y., Love, M. I., & Li, Y. (2018). SAFE-clustering: Single-cell aggregated (from Ensemble) clustering for single-cell RNA-seq data. Bioinformatics, 35(8), 1269–1277.

    Article  Google Scholar 

  14. Zhu, L., Lei, J., Devlin, B., Roeder, K. (2019). Semi-soft clustering of single cell data. Proceedings of the National Academy of Sciences of the United States of America, 116(2), 466–471.

    Article  MathSciNet  Google Scholar 

  15. Sun, Z., Wang, T., Deng, K., Wang, X. F., Lafyatis, R., Ding, Y., et al. (2017). DIMM-SC: A dirichlet mixture model for clustering droplet-based single cell transcriptomic data. Bioinformatics, 34(1), 139–146.

    Article  Google Scholar 

  16. Zamanighomi, M., Lin, Z., Daley, T., Chen, X., Duren, Z., Schep, A., et al. (2018). Unsupervised clustering and epigenetic classification of single cells. Nature Communications, 9(1), 2410.

    Article  Google Scholar 

  17. Makarenkov, V., & Legendre, P. (2001). Optimal variable weighting for ultrametric and additive trees and k-means partitioning: Methods and software. Journal of Classification, 18, 245–271.

    Article  MathSciNet  Google Scholar 

  18. Modha, D. S., & Spangler, W. S. (2003). Feature weighting in k-means clustering. Machine Learning, 52(3), 217–237.

    Article  Google Scholar 

  19. Huang, J. Z., Ng, M. K., Rong, H., & Li, Z. (2005). Automated variable weighting in k-means type clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 657–68.

    Article  Google Scholar 

  20. Jing, L., Ng, M. K., & Huang, J. Z. (2007). An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data. IEEE Transactions on Knowledge and Data Engineering, 19, 1026–1041.

    Article  Google Scholar 

  21. Wu, F. X. (2008). Genetic weighted k-means algorithm for clustering large-scale gene expression data. BMC Bioinformatics, 9(Suppl. 6), S12.

    Article  Google Scholar 

  22. Amorim, R., & Mirkin, B. (2012). Minkowski metric, feature weighting and anomalous cluster initializing in k-means clustering. Pattern Recognition, 45, 1061–1075.

    Article  Google Scholar 

  23. Tseng, G. (2007). Penalized and weighted k-means for clustering with scattered objects and prior information in high-throughput biological data. Bioinformatics (Oxford, England), 23, 2247–55.

    Article  Google Scholar 

  24. Aloise, D., Deshpande, A., Hansen, P., & Popat, P. (2009). NP-hardness of Euclidean sum-of-squares clustering. Machine Learning, 75,(2), 245–248.

    Article  Google Scholar 

  25. Hartigan, J. A., & Wong, M. A. (1979). Algorithm as 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100–108.

    MATH  Google Scholar 

  26. Witten, D. M., & Tibshirani, R. (2010). A framework for feature selection in clustering. Journal of the American Statistical Association, 105(490), 713–726.

    Article  MathSciNet  Google Scholar 

  27. Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2), 411–423.

    Article  MathSciNet  Google Scholar 

  28. Park, H., & Kim, H. (2007). Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics, 23(12), 1495–1502.

    Article  Google Scholar 

  29. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y., & Greenleaf, W. J. (2013). Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nature Methods, 10(12), 1213.

    Article  Google Scholar 

  30. Buenrostro, J. D., Wu, B., Chang, H. Y., & Greenleaf, W. J. ATAC-seq: A method for assaying chromatin accessibility genome-wide. Current Protocols in Molecular Biology, 109(1), 21–29.

    Google Scholar 

  31. Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E., et al. (2008). Model-based analysis of chip-seq (MACS). Genome Biology, 9(9), R137.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixiang Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, W., Wangwu, J., Lin, Z. (2020). Weighted K-Means Clustering with Observation Weight for Single-Cell Epigenomic Data. In: Zhao, Y., Chen, DG. (eds) Statistical Modeling in Biomedical Research. Emerging Topics in Statistics and Biostatistics . Springer, Cham. https://doi.org/10.1007/978-3-030-33416-1_3

Download citation

Publish with us

Policies and ethics