Skip to main content

Classification of EEG Motion Artifact Signals Using Spatial ICA

  • Chapter
  • First Online:

Part of the book series: Emerging Topics in Statistics and Biostatistics ((ETSB))

Abstract

Using electroencephalography (EEG) data to extract information about cortical signals has become an increasingly explored task of interest in the field of computational neuroscience. In this paper, we proposed a novel procedure which reduce dimension by applying spatial Independent Component Analysis (SICA) on EEG motion artifact data and classify gait speed for a given subject by the projected EEG motion artifact signals. Whereas most applications of ICA in analyzing EEG data employ temporal ICA, we use SICA and Principal Component Analysis for dimension reduction before applying classifiers such as Support Vector Machines, Naive Bayes, and multinomial logistic regression to the extracted independent components. We evaluate and compare the classification models by using randomly selected channels from the multi-channel EEG motion artifact data as our test data. For practical application and interpretation, we treat the test channels as if they might come from a new trial for the given subject.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anemüller, J., Duann, J. R., Sejnowski, T. J., & Makeig, S. (2006). Spatio-temporal dynamics in fMRI recordings revealed with complex independent component analysis. Neurocomputing, 69, 1502–1512

    Article  Google Scholar 

  2. Barua, S., & Begum, S. (2014). A review on machine learning algorithms in handling EEG artifacts. In Proceeding of the Swedish AI Society (SAIS) Workshop (SAIS 14) (pp. 22–23).

    Google Scholar 

  3. Bell, A., & Sejnowski, T. (1995). An information maximization approach to blind separation and blind deconvolution. Advances in Neural Information Processing Systems, 7, 1129–1159.

    Google Scholar 

  4. Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Berlin: Springer.

    MATH  Google Scholar 

  5. Brown, G. D., Yamada, S., & Sejnowski, T. J. (2001). Independent component analysis at the neural cocktail party. Trends in Neuroscience, 24(1), 54–63.

    Article  Google Scholar 

  6. Calhoun, V. D., Adali, T., Hansen, L. K., Larsen, J. J. & Pekar, J. J. (2003). ICA of functional MRI data: an overview. In In Proceedings of the 4th International Symposium on Independent Component Analysis and Blind Signal Separation (pp. 281–288).

    Google Scholar 

  7. Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2001). Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Human Brain Mapping, 13, 43–53.

    Article  Google Scholar 

  8. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.

    MATH  Google Scholar 

  9. Delorme, A., Palmer, J., Onton, J., Oostenveld, R., & Makeig, S. (2012). Independent EEG sources are dipolar. PLoS One, 7(2), e30135.

    Article  Google Scholar 

  10. Enders, H., & Nigg, B. M. (2015). Measuring human locomotor control using EMG and EEG: Current knowledge, limitations and future considerations. European Journal of Sport Science, 16(4), 1–11.

    Google Scholar 

  11. Friedman, J., Hastie, T., Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1–22.

    Article  Google Scholar 

  12. Hand, D. J., & Till, R. J. (2001). A simple generalisation of the area under the ROC curve for multiple class classification problems. Machine Learning, 45(2), 171–186.

    Article  Google Scholar 

  13. Hyvärinen, A., & Oja, E. (1997) A fast fixed-point algorithm for independent component analysis. Neural Computation, 9(7), 1483–1492.

    Article  Google Scholar 

  14. Hyvärinen, A., & Oja, E. (2000) Independent component analysis: Algorithms and applications. Neural Networks, 13(4–5), 411–430.

    Article  Google Scholar 

  15. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning. New York: Springer.

    Book  Google Scholar 

  16. Keerthi, S., & Lin, C. (2003). Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Computation, 15(7), 1667–1689.

    Article  Google Scholar 

  17. Kline, J., Huang, H., Snyder, K., & Ferris, D. (2015). Isolating gait-related movement artifacts in electroencephalography during human walking. Journal of Neural Engineering, 12(4), 046022.

    Article  Google Scholar 

  18. Langlois, D., Chartier, S., & Gosselin, D. (2010). An introduction to independent component analysis: InfoMax and FastICA algorithms. Tutorials in Quantitative Methods for Psychology, 6(1), 31–38.

    Article  Google Scholar 

  19. Majka, M. (2017) naivebayes: High performance implementation of the Naive Bayes algorithm. R package, 2017, version 0.9.1.

    Google Scholar 

  20. Marchini, J. L., Heaton, C., & Ripley, B. D. (2017) Package fastICA. R package, version 1.2-1.

    Google Scholar 

  21. Meyer, D., Dimiriadou, E., Hornik, K., Weingessel, A., Leisch, F., Chang, C.-C., et al. (2017) e1071: Misc functions of the Department of Statistics, Probability Theory Group. R package, version 1.6-8.

    Google Scholar 

  22. Nordin, A., Hairston, W., & Ferris, D. (2018). Dualelectrode motion artifact cancellation for mobile electroencephalography. Journal of Neural Engineering, 15, 056024.

    Article  Google Scholar 

  23. Oja, E., & Yuan, Z. (2006). The FastICA algorithm revisited: Convergence analysis. IEEE Transactions on Neural Networks, 17(6), 1370–1381.

    Article  Google Scholar 

  24. Sakaguchi, Y., Ozawa, S., & Kotani, M. (2002) Feature extraction using supervised independent component analysis by maximizing class distance. IEEJ Transactions on Electronics Information and Systems, 124(1), 2502–2506.

    Google Scholar 

  25. Snyder, K., Kline, J., Huang, H., & Ferris, D. (2015). Independent component analysis of gait-related movement artifact recorded using EEG electrodes during treadmill walking. Frontiers in Human Neuroscience, 9, 639.

    Google Scholar 

  26. Stone, J. (2005). Independent component analysis. Encyclopedia of Statistics in Behavioral Science, 2, 907–912.

    Google Scholar 

  27. Weston, J., & Watkins, C. (1998). Multi-class support vector machines. Royal Holloway University of London, 2, 907–912.

    Google Scholar 

  28. Yee, T. (2017). VGAM: Vector generalized linear and additive models. R package, version 1.0-4.

    Google Scholar 

Download references

Acknowledgement

We thank NIH for grant 1R01AG054621-01 which partially supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsin-Hsiung Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, HH., Condor, A., Huang, H.J. (2020). Classification of EEG Motion Artifact Signals Using Spatial ICA. In: Zhao, Y., Chen, DG. (eds) Statistical Modeling in Biomedical Research. Emerging Topics in Statistics and Biostatistics . Springer, Cham. https://doi.org/10.1007/978-3-030-33416-1_2

Download citation

Publish with us

Policies and ethics