Skip to main content

Mathematical Model of Mouse Ventricular Myocytes Overexpressing Adenylyl Cyclase Type 5

  • Chapter
  • First Online:
  • 1048 Accesses

Part of the book series: Emerging Topics in Statistics and Biostatistics ((ETSB))

Abstract

A compartmentalized mathematical model of transgenic (TG) mouse ventricular myocytes overexpressing adenylyl cyclase type 5 was developed. The model describes well β1- and β2-adrenergic signaling systems consisting of β1- and β2-adrenergic receptors (β1-ARs and β2-ARs), stimulatory and inhibitory G proteins (Gs and Gi), adenylyl cyclases types 4–7 (AC4–7), phosphodiesterases type 2–4 (PDE2–4), protein kinase A (PKA), protein phosphatases type 1 and 2A (PP1 and PP2A), G-protein receptor kinase type 2 (GRK2), heat-stable protein kinase inhibitor (PKI), and the inhibitor-1 (I-1). We found that the overexpression of AC5 resulted in an increased basal cAMP production, leading to an increased activation of PKA, prolongation of the action potential, and increased [Ca2+]i transient. Simulation results suggest blunted response of TG ventricular cells to the stimulation of β-adrenergic signaling system with isoproterenol comparing to wild type (WT) cells. Simulations of spontaneous Ca2+ release showed larger magnitudes of DADs in TG as compared to WT mice. Modeling data were compared to the experimental data obtained from TG mice overexpressing AC5 as well as to the simulations obtained with the mathematical model for WT mice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Keys, J. R., & Koch, W. J. (2004). The adrenergic pathway and heart failure. Recent Progress in Hormone Research, 59, 13–30.

    Article  Google Scholar 

  2. Koch, W. J., Lefkowitz, R. J., & Rockman, H. A. (2000). Functional consequences of altering myocardial adrenergic receptor signaling. Annual Review of Physiology, 62, 237–260.

    Article  Google Scholar 

  3. Nerbonne, J. M. (2014). Mouse models of arrhythmogenic cardiovascular disease: Challenges and opportunities. Current Opinion in Pharmacology, 15, 107–114.

    Article  Google Scholar 

  4. Brodde, O. E., & Michel, M. C. (1999). Adrenergic and muscarinic receptors in the human heart. Pharmacological Reviews, 51, 651–689.

    Google Scholar 

  5. Engelhardt, S., Hein, L., Wiesmann, F., & Lohse, M. J. (1999). Progressive hypertrophy and heart failure in β1-adrenergic receptor transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 96, 7059–7064.

    Article  Google Scholar 

  6. Milano, C. A., Allen, L. F., Rockman, H. A., Dolber, P. C., McMinn, T. R., Chien, K. R., Johnson, T. D., Bond, R. A., & Lefkowitz, R. J. (1994). Enhanced myocardial function in transgenic mice overexpressing the β2-adrenergic receptor. Science, 264, 582–586.

    Article  Google Scholar 

  7. Liggett, S. B., Tepe, N. M., Lorenz, J. N., Canning, A. M., Jantz, T. D., Mitarai, S., Yatani, A., & Dorn, G. W., II. (2000). Early and delayed consequences of β2-adrenergic receptor overexpression in mouse hearts. Critical role for expression level. Circulation, 101, 1707–1714.

    Article  Google Scholar 

  8. Ho, D., Yan, L., Iwatsubo, K., Vatner, D. E., & Vatner, S. F. (2010). Modulation of β-adrenergic receptor signaling in heart failure and longevity: Targeting adenylyl cyclase type 5. Heart Failure Reviews, 15, 495–512.

    Article  Google Scholar 

  9. Lai, L., Yan, L., Gao, S., Hu, C. L., Ge, H., Davidow, A., Park, M., Bravo, C., Iwatsubo, K., Ishikawa, Y., Auwerx, J., Sinclair, D. A., Vatner, S. F., & Vatner, D. E. (2013). Type 5 adenylyl cyclase increases oxidative stress by transcriptional regulation of manganese superoxide dismutase via the SIRT1/FoxO3a pathway. Circulation, 127, 1692–1701.

    Article  Google Scholar 

  10. Vatner, S. F., Park, M., Yan, L., Lee, G. J., Lai, L., Iwatsubo, K., Ishikawa, Y., Pessin, J., & Vatner, D. E. (2013). Adenylyl cyclase 5 in cardiac disease, metabolism, and aging. American Journal of Physiology. Heart and Circulatory Physiology, 305, H1–H8.

    Article  Google Scholar 

  11. Zhao, Z., Babu, G. J., Wen, H., Fefelova, N., Gordan, R., Sui, X., Yan, L., Vatner, D. E., Vatner, S. F., & Xie, L. H. (2015). Overexpression of adenylyl cyclase type 5 (AC5) confers a proarrhythmic substrate to the heart. American Journal of Physiology. Heart and Circulatory Physiology, 308, H240–H249.

    Article  Google Scholar 

  12. Bondarenko, V. E. (2014). A compartmentalized mathematical model of the β1-adrenergic signaling system in mouse ventricular myocytes. PLoS One, 9, e89113.

    Article  Google Scholar 

  13. Bondarenko, V. E., Szigeti, G. P., Bett, G. C. L., Kim, S. J., & Rasmusson, R. L. (2004). Computer model of action potential of mouse ventricular myocytes. American Journal of Physiology. Heart and Circulatory Physiology, 287, H1378–H1403.

    Article  Google Scholar 

  14. Petkova-Kirova, P. S., London, B., Salama, G., Rasmusson, R. L., & Bondarenko, V. E. (2012). Mathematical modeling mechanisms of arrhythmias in transgenic mouse heart overexpressing TNF-α. American Journal of Physiology. Heart and Circulatory Physiology, 302, H934–H952.

    Article  Google Scholar 

  15. Rozier, K., & Bondarenko, V. E. (2017). Distinct physiological effects of β1- and β2-adrenoceptors in mouse ventricular myocytes: Insights from a compartmentalized mathematical model. American Journal of Physiology. Cell Physiology, 312, C595–C623.

    Article  Google Scholar 

  16. Tang, T., Lai, N. C., Roth, D. M., Drumm, J., Guo, T., Lee, K. W., Han, P. L., Dalton, N., & Gao, M. H. (2006). Adenylyl cyclase type V deletion increases basal left ventricular function and reduces left ventricular contractile responsiveness to β-adrenergic stimulation. Basic Research in Cardiology, 101, 117–126.

    Article  Google Scholar 

  17. Luo, W., Grupp, I. L., Harrer, J., Ponniah, S., Grupp, G., Duffy, J. J., Doetschman, T., & Kranias, E. G. (1994). Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of β-agonist stimulation. Circulation Research, 75, 401–409.

    Article  Google Scholar 

  18. Kadambi, V. J., Ponniah, S., Harrer, J. M., Hoit, B. D., Dorn, G. W., II, Walsh, R. A., & Kranias, E. G. (1996). Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice. The Journal of Clinical Investigation, 97, 533–539.

    Article  Google Scholar 

  19. Li, G. R., Feng, J., Wang, Z., Fermini, B., & Nattel, S. (1996). Adrenergic modulation of ultrarapid delayed rectifier K+ current in human atrial myocytes. Circulation Research, 78, 903–915.

    Article  Google Scholar 

  20. Gaborit, N., Le Bouter, S., Szuts, V., Varro, A., Escande, D., Nattel, S., & Demolombe, S. (2007). Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart. The Journal of Physiology, 582, 675–693.

    Article  Google Scholar 

  21. Brandt, M. C., Priebe, L., Böhle, T., Südkamp, M., & Beuckelmann, D. J. (2000). The ultrarapid and the transient outward K+ current in human atrial fibrillation. Their possible role in postoperative atrial fibrillation. Journal of Molecular and Cellular Cardiology, 32, 1885–1896.

    Article  Google Scholar 

  22. Kodirov, S. A., Brunner, M., Nerbonne, J. M., Buckett, P., Mitchell, G. F., & Koren, G. (2004). Attenuation of IK,slow1 and IK,slow2 in Kv1/Kv2DN mice prolongs APD and QT intervals but does not suppress spontaneous or inducible arrhythmias. American Journal of Physiology. Heart and Circulatory Physiology, 286, H368–H374.

    Article  Google Scholar 

  23. London, B., Guo, W., Pan, X. H., Lee, J. S., Shusterman, V., Rocco, C. J., Logothetis, D. A., Nerbonne, J. M., & Hill, J. A. (2001). Targeted replacement of Kv1.5 in the mouse leads to loss of the 4-aminopyridine-sensitive component of IK,slow and resistance to drug-induced QT prolongation. Circulation Research, 88, 940–946.

    Article  Google Scholar 

  24. Wilson, G. G., O’Neill, C. A., Sivaprasadarao, A., Findlay, J. B. C., & Wray, D. (1994). Modulation by protein kinase A of a cloned rat brain potassium channel expressed in Xenopus oocytes. Pflügers Archiv, 428, 186–193.

    Article  Google Scholar 

  25. Zhou, M. H., Yang, G., Jiao, S., Hu, C. L., & Mei, Y. A. (2012). Cholesterol enhances neuron susceptibility to apoptotic stimuli via cAMP/PKA/CREb-dependent up-regulation of Kv2.1. Journal of Neurochemistry, 120, 502–514.

    Article  Google Scholar 

  26. Tepe, N. M., & Liggett, S. B. (1999). Transgenic replacement of type V adenylyl cyclase identifies a critical mechanism of β-adrenergic receptor dysfunction in the Gαq overexpressing mouse. FEBS Letters, 458, 236–240.

    Article  Google Scholar 

  27. Lemire, I., Allen, B. G., Rindt, H., & Hebert, T. E. (1998). Cardiac-specific overexpression of α1BAR regulates βAR activity via molecular crosstalk. Journal of Molecular and Cellular Cardiology, 30, 1827–1839.

    Article  Google Scholar 

  28. Iwatsubo, K., Bravo, C., Uechi, M., Baljinnyam, E., Nakamura, T., Umemura, M., Lai, L., Gao, S., Yan, L., Zhao, X., Park, M., Qiu, H., Okumura, S., Iwatsubo, M., Vatner, D. E., Vatner, S. F., & Ishikawa, Y. (2012). Prevention of heart failure in mice by an antiviral agent that inhibits type 5 cardiac adenylyl cyclase. American Journal of Physiology. Heart and Circulatory Physiology, 302, H2622–H2628.

    Article  Google Scholar 

  29. Nerbonne, J. M., Nichols, C. G., Schwarz, T. L., & Escande, D. (2001). Genetic manipulation of cardiac K+ channel function in mice: What have we learned, and where do we go from here? Circulation Research, 89, 944–956.

    Article  Google Scholar 

  30. Guellich, A., Gao, S., Hong, C., Yan, L., Wagner, T. E., Dhar, S. K., Ghaleh, B., Hittinger, L., Iwatsubo, K., Ishikawa, Y., Vatner, S. F., & Vatner, D. E. (2010). Effects of cardiac overexpression of type 6 adenylyl cyclase affects on the response to chronic pressure overload. American Journal of Physiology. Heart and Circulatory Physiology, 299, H707–H712.

    Article  Google Scholar 

  31. Gaudin, C., Ishikawa, Y., Wight, D. C., Mahdavi, V., Nadal-Ginard, B., Wagner, T. E., Vatner, D. E., & Homcy, C. J. (1995). Overexpression of G protein in the hearts of transgenic mice. The Journal of Clinical Investigation, 95, 1676–1683.

    Article  Google Scholar 

  32. Rozier, K., & Bondarenko, V. E. (2018). Mathematical modeling physiological effects of the overexpression of β2-adrenoceptors in mouse ventricular myocytes. American Journal of Physiology. Heart and Circulatory Physiology, 314, H643–H658.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir E. Bondarenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bondarenko, V.E. (2020). Mathematical Model of Mouse Ventricular Myocytes Overexpressing Adenylyl Cyclase Type 5. In: Zhao, Y., Chen, DG. (eds) Statistical Modeling in Biomedical Research. Emerging Topics in Statistics and Biostatistics . Springer, Cham. https://doi.org/10.1007/978-3-030-33416-1_16

Download citation

Publish with us

Policies and ethics