Skip to main content

Modeling Species Specific Gene Expression Across Multiple Regions in the Brain

  • Chapter
  • First Online:
  • 1127 Accesses

Part of the book series: Emerging Topics in Statistics and Biostatistics ((ETSB))

Abstract

Motivation: The question of what makes the human brain functionally different from that of other closely related primates, such as the chimpanzee, has both philosophical as well as practical implications. One of the challenges faced with such studies, however, is the small sample size available. Furthermore, expression values for multiple brain regions have an inherent structure that is generally ignored in published studies.

Results: We present a new statistical approach to identify genes with species specific expression, that (1) avoids multiple pairwise comparisons, which can be susceptible to small changes in expression as well as intransitivity, and (2) pools information across related data sets when available to produce more robust results, such as in the case of gene expression across multiple brain regions. We demonstrate through simulations that our model can much better identify human specific genes than the naive approach. Applications of the model to two previously published data sets, one microarray and one RNA-Seq, suggest a moderately large benefit from our model. We show that our approach produces more robust gene classifications across regions, and greatly reduces the number of human specific genes previously reported, which we show were primarily due to the noise in the underlying data.

Electronic Supplementary Material The online version of this chapter (https://doi.org/10.1007/978-3-030-33416-1_1) contains supplementary material, which is available to authorized users.

Availability and Implementation: Code for estimating the Markov random field parameters and obtaining posterior probabilities for the MRF can be found in the data package attached. All code is written in R.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Csaki (Eds.). Second International Symposium on Information Theory (pp. 267–281). Budapest: Akadémiai Kiado.

    Google Scholar 

  2. Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology, 11(10).

    Google Scholar 

  3. Besag, J. (1986). On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society, 48(3), 259–302.

    MathSciNet  MATH  Google Scholar 

  4. Cáceres, M., Lachuer, J., Zapala, M. A., Redmond, J. C., Kudo, L., Geschwind, D. H., et al. (2003). Elevated gene expression levels distinguish human from non-human primate brains. Proceedings of the National Academy of Sciences of the United States of America, 100(22), 13030–13035. ISSN 0027-8424. https://doi.org/10.1073/pnas.2135499100

    Article  Google Scholar 

  5. Celeux, G., Forbes, F., & Peyrard, N. (2003). EM procedures using mean field-like approximations for Markov model-based image segmentation. Pattern Recognition, 36, 131–144.

    Article  Google Scholar 

  6. Dayton, C. M. (1998). Information criteria for the paired-comparisons problem. The American Statistician, 52(2), 144–151.

    Google Scholar 

  7. Dayton, C. M. (2003). Information criteria for pairwise comparisons. Psychological Methods, 8(1), 61–71.

    Article  MathSciNet  Google Scholar 

  8. Delmar, P., Robin, S., Daudin, J., Delmar, P., Robin, S., & Daudin, J. (2005). VarMixt: Efficient variance modelling for the differential analysis of replicated gene expression data. ISSN 1367-4803. https://doi.org/10.1093/bioinformatics/bti023

  9. Enard, W., Khaitovich, P., Klose, J., Zollner, S., Hessig, F., Giavalisco, P., et al. (2002). Intra- and interspecific variation in primate gene expression patterns. Science, New York, NY, 296(5566), 340–343. ISSN 0036-8075. https://doi.org/10.1126/science.1068996

    Article  Google Scholar 

  10. Florence, J., Guillemette, M., Séverine, D., Isabelle, H., & Jean-Louis, F. (2007). A structural mixed model for variances in differential gene expression studies. p. 19. ISSN 0016-6723. https://doi.org/10.1017/S0016672307008646

  11. Hurvich, C. M., & Tsai, C.-L. (1989). Regression and time series model selection in small samples. Biometrika, 76(2), 297–307.

    Article  MathSciNet  Google Scholar 

  12. Jeanmougin, M., de Reynies, A., Marisa, L., Paccard, C., Nuel, G., & Guedj, M. (2010). Should we abandon the t-test in the analysis of gene expression microarray data: A comparison of variance modeling strategies. Plos One, 5(9), e12336. https://doi.org/10.1371/journal.pone.0012336

    Article  Google Scholar 

  13. Khaitovich, P., Muetzel, B., She, X., Lachmann, M., Hellmann, I., Dietzsch, J., et al. (2004). Regional patterns of gene expression in human and chimpanzee brains. Genome Research, 14(8), 1462–1473. ISSN 1088-9051. https://doi.org/10.1101/gr.2538704

    Article  Google Scholar 

  14. Konopka, G., Friedrich, T., Davis-Turak, J., Winden, K., Oldham, M. C., Gao, F., et al. (2012). Human-specific transcriptional networks in the brain. Neuron, 75(4), 601–617. https://doi.org/10.1016/j.neuron.2012.05.034. http://www.ncbi.nlm.nih.gov/pubmed/22920253

  15. Li, H., Wei, Z., & Maris, J. (2009). A hidden Markov random field model for genome-wide association studies. Biostatistics, 11(1), 139–150. https://doi.org/10.1093/biostatistics/kxp043

    Article  Google Scholar 

  16. Lin, Z., Li, M., Sestan, N., & Zhao, H. (2016). A Markov random field-based approach for joint estimation of differentially expressed genes in mouse transcriptome data. Statistical Applications in Genetics and Molecular Biology. https://doi.org/10.1515/sagmb-2015-0070. http://www.ncbi.nlm.nih.gov/pubmed/26926866

  17. Lin, Z., Sanders, S. J., Li, M., Sestan, N., State, M. W., & Zhao, H. (2015). A Markov random field-based approach to characterizing human brain development using spatial-temporal transcriptome data. Annals of Applied Statistics, 9(1), 429–451. https://doi.org/10.1214/14-AOAS802. http://www.ncbi.nlm.nih.gov/pubmed/26877824

  18. Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550.

    Article  Google Scholar 

  19. McCarthy, D. J., Chen, Y., & Smyth, G. K. (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Research, 40(10), 4288–4297.

    Article  Google Scholar 

  20. Oshlack, A., Chabot, A. E., Smyth, G. K., & Gilad, Y. (2007). Using DNA microarrays to study gene expression in closely related species. Methods of Biochemical Analysis, 23(10), 1235–1242. ISSN 1367-4803. https://doi.org/10.1093/bioinformatics/btm111

    Google Scholar 

  21. Robinson, M. D., & Smyth, G. K. (2008). Small-sample estimation of negative binomial dispersion, with applications to sage data. Biostatistics, 9(2), 321–332.

    Article  Google Scholar 

  22. Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461–464, 03. https://doi.org/10.1214/aos/1176344136. http://dx.doi.org/10.1214/aos/1176344136

  23. Semendeferi, K., Teffer, K.,Buxhoeveden, D. P., Park, M. S., Bludau, S., Amunts, K., et al. (2011). Spatial organization of neurons in the frontal pole sets humans apart from great apes. Cerebral Cortex, 21(7),1485–1497. https://doi.org/10.1093/cercor/bhq191

    Article  Google Scholar 

  24. Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology, 3(1), 1–25. ISSN 1544-6115. https://doi.org/10.2202/1544-6115.1027

    Article  MathSciNet  Google Scholar 

  25. Tsujimoto, S., Genovesio, A., & Wise, S. P. (2010). Evaluating self-generated decisions in frontal pole cortex of monkeys. Nature Neuroscience, 13(1), 120–126. ISSN 1097-6256. https://doi.org/10.1038/nn.2453

    Article  Google Scholar 

  26. Varki, A. (2000). A chimpanzee genome project is a biomedical imperative. Genome Research, 10(8), 1065-1070.

    Article  Google Scholar 

  27. Varki, A., & Altheide, T. K. (2005). Comparing the human and chimpanzee genomes: Searching for needles in a haystack. Genome Research, 15(12), 1746–1758. ISSN 1088-9051. https://doi.org/10.1101/gr.3737405

    Article  Google Scholar 

  28. Wei, Z., & Li, H. (2008). A hidden spatial-temporal Markov random field model for network-based analysis of time course gene expression data. Annals of Applied Statistics, 2(1), 408–429. https://doi.org/10.1214/07-AOAS145

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Zhixiang Lin, for discussion of the Markov random field model and its applications.

Funding LD was supported by the National Library of Medicine Informatics training grant. HZ was supported in part by NIH R01 GM59507.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Diao, L., Zhu, Y., Sestan, N., Zhao, H. (2020). Modeling Species Specific Gene Expression Across Multiple Regions in the Brain. In: Zhao, Y., Chen, DG. (eds) Statistical Modeling in Biomedical Research. Emerging Topics in Statistics and Biostatistics . Springer, Cham. https://doi.org/10.1007/978-3-030-33416-1_1

Download citation

Publish with us

Policies and ethics