Skip to main content

Redundancy Resolution with Periodic Input Disturbance

  • Chapter
  • First Online:
Deep Reinforcement Learning with Guaranteed Performance

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 265))

  • 1319 Accesses

Abstract

Input disturbances and physical constraints are important issues in the kinematic control of redundant manipulators. In this chapter, we present a novel recurrent neural network to simultaneously address the periodic input disturbance, joint angle constraint, and joint velocity constraint, and optimize a general quadratic performance index. The presented recurrent neural network applies to both regulation and tracking tasks. Theoretical analysis shows that, with the presented neural network, the end-effector tracking and regulation errors asymptotically converge to zero in the presence of both input disturbance and the two constraints. Simulation examples and comparisons with an existing controller are also presented to validate the effectiveness and superiority of the presented controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, S., Zhang, Y., Jin, L.: Kinematic control of redundant manipulators using neural networks. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2243–2254 (2017)

    Article  MathSciNet  Google Scholar 

  2. Klein, C.A., Huang, C.-H.: Review of pseudoinverse control for use with kinematically redundant manipulators. IEEE Trans. Syst. Man Cybern. SMC-13(2), 245–250 (1983)

    Article  Google Scholar 

  3. Liao, B., Liu, W.: Pseudoinverse-type bi-criteria minimization scheme for redundancy resolution of robot manipulators. Robotica 33(10), 2100–2113 (2015)

    Article  Google Scholar 

  4. Flacco, F., Luca, A.: Discrete-time redundancy resolution at the velocity level with acceleration/torque optimization properties. Robot. Auton. Syst. 70, 191–201 (2015)

    Article  Google Scholar 

  5. Klein, C.A., Kee, K.B.: The nature of drift in pseudoinverse control of kinematically redundant manipulators. IEEE Trans. Robot. Autom. 5(2), 231–234 (1989)

    Article  Google Scholar 

  6. Zhang, Y., Wang, J., Xia, Y.: A dual neural network for redundancy resolution of kinematically redundant manipulators subject to joint limits and joint velocity limits. IEEE Trans. Neural Netw. 14(3), 658–667 (2003)

    Article  Google Scholar 

  7. Huang, S., Peng, Y., Wei, W., Xiang, J.: Clamping weighted least-norm method for the manipulator kinematic control with constraints. Int. J. Control 89(11), 2240–2249 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheng, F.T., Chen, T.H., Sun, Y.Y.: Resolving manipulator redundancy under inequality constraints. IEEE Trans. Robot. Autom. 10(1), 65–71 (1994)

    Article  Google Scholar 

  9. Patchaikani, P.K., Behera, L., Prasad, G.: A single network adaptive critic-based redundancy resolution scheme for robot manipulators. IEEE Trans. Ind. Electron. 59(8), 3241–3253 (2012)

    Article  Google Scholar 

  10. He, W., Huang, B., Dong, Y., Li, Z., Su, C.: Adaptive neural network control for robotic manipulators with unknown deadzone. IEEE Trans. Cybern. 48(9), 2670–2682 (2018)

    Article  Google Scholar 

  11. Li, D., Liu, Y., Tong, S., Chen, C.L.P., Li, D.: Neural networks-based adaptive control for nonlinear state constrained systems with input delay. IEEE Trans. Cybern. 49(4), 1249–1258 (2019)

    Article  Google Scholar 

  12. Guo, D., Yan, L., Nie, Z.: Design, analysis, and representation of novel five-step dtzd algorithm for time-varying nonlinear optimization. IEEE Trans. Neural Netw. Learn. Syst. 29(9), 4248–4260 (2018)

    Article  Google Scholar 

  13. Yang, C., Li, Z., Cui, R., Xu, B.: Neural network-based motion control of underactuated wheeled inverted pendulum models. IEEE Trans. Neural Netw. Learn. Syst. 25(11), 2004–2016 (2014)

    Article  Google Scholar 

  14. Jin, L., Li, S., Hu, B., Liu, M., Yu, J.: Noise-suppressing neural algorithm for solving time-varying system of linear equations: a control-based approach. IEEE Trans. Ind. Inform. 15(1), 236–246 (2019)

    Article  Google Scholar 

  15. Jin, L., Li, S., Hu, B., Liu, M.: A survey on projection neural networks and their applications. Appl. Soft Comput. 76, 533–544 (2019)

    Article  Google Scholar 

  16. Xiao, L., Li, K., Tan, Z., Zhang, Z., Liao, B., Chen, K., Jin, L., Li, S.: Nonlinear gradient neural network for solving system of linear equations. Inf. Process. Lett. 142, 35–40 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Xiang, Q., Liao, B., Xiao, L., Lin, L., Li, S.: Discrete-time noise-tolerant Zhang neural network for dynamic matrix pseudoinversion. Soft Comput. 23(3), 755–766 (2019)

    Article  MATH  Google Scholar 

  18. Xiao, L., Li, S., Yang, J., Zhang, Z.: A new recurrent neural network with noise-tolerance and finite-time convergence for dynamic quadratic minimization. Neurocomputing 285, 125–132 (2018)

    Article  Google Scholar 

  19. Xiao, L., Liao, B., Li, S., Chen, K.: Nonlinear recurrent neural networks for finite-time solution of general time-varying linear matrix equations. Neural Netw. 98, 102–113 (2018)

    Article  Google Scholar 

  20. Xiao, L., Zhang, Z., Zhang, Z., Li, W., Li, S.: Design, verification and robotic application of a novel recurrent neural network for computing dynamic Sylvester equation. Neural Netw. 105, 185–196 (2018)

    Article  Google Scholar 

  21. Zhang, Z., Lu, Y., Zheng, L., Li, S., Yu, Z., Li, Y.: A new varying-parameter convergent-differential neural-network for solving time-varying convex QP problem constrained by linear-equality. IEEE Trans. Autom. Control 63(12), 4110–4125 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jin, L., Li, S.: Nonconvex function activated zeroing neural network models for dynamic quadratic programming subject to equality and inequality constraints. Neurocomputing 267, 107–113 (2017)

    Article  Google Scholar 

  23. Jin, L., Li, S., Liao, B., Zhang, Z.: Zeroing neural networks: a survey. Neurocomputing 267, 597–604 (2017)

    Article  Google Scholar 

  24. Mao, M., Li, J., Jin, L., Li, S., Zhang, Y.: Enhanced discrete-time Zhang neural network for time-variant matrix inversion in the presence of bias noises. Neurocomputing 207, 220–230 (2016)

    Article  Google Scholar 

  25. Jin, L., Zhang, Y., Li, S.: Integration-enhanced Zhang neural network for real-time-varying matrix inversion in the presence of various kinds of noises. IEEE Trans. Neural Netw. Learn. Syst. 27(12), 2615–2627 (2016)

    Article  Google Scholar 

  26. Li, S., Li, Y.: Nonlinearly activated neural network for solving time-varying complex sylvester equation. IEEE Trans. Cybern. 44(8), 1397–1407 (2014)

    Article  Google Scholar 

  27. Li, S., Li, Y., Wang, Z.: A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application. Neural Netw. 39, 27–39 (2013)

    Article  MATH  Google Scholar 

  28. Hopfield, J.J., Tank, D.W.: Neural’ computation of decisions in optimization problems. Biol. Cybern. 52(3), 141–152 (1985)

    MATH  Google Scholar 

  29. Zhang, Y., Chen, S., Li, S., Zhang, Z.: Adaptive projection neural network for kinematic control of redundant manipulators with unknown physical parameters. IEEE Trans. Ind. Electron. 65(6), 4909–4920 (2017)

    Article  Google Scholar 

  30. Xia, Y., Feng, G., Wang, J.: A primal-dual neural network for online resolving constrained kinematic redundancy in robot motion control. IEEE Trans. Syst. Man Cybern. B Cybern. 35(1), 54–64 (2005)

    Article  Google Scholar 

  31. Zhang, Y., Wang, J., Xu, Y.: A dual neural network for bi-criteria kinematic control of redundant manipulators. IEEE Trans. Robot. Autom. 18(6), 923–931 (2002)

    Article  Google Scholar 

  32. Zhang, Y., Wang, J.: Obstacle avoidance for kinematically redundant manipulators using a dual neural network. IEEE Trans. Syst. Man Cybern. B Cybern. 34(1), 752–759 (2004)

    Article  Google Scholar 

  33. Zhang, Y., Ge, S.S., Lee, T.H.: A unified quadratic-programming-based dynamical system approach to joint torque optimization of physically constrained redundant manipulators. IEEE Trans. Syst. Man Cybern. B Cybern. 34(5), 2126–2132 (2004)

    Article  Google Scholar 

  34. Jin, L., Li, S., La, H.M., Luo, X.: Manipulability optimization of redundant manipulators using dynamic neural networks. IEEE Trans. Ind. Electron. 64(6), 4710–4720 (2017)

    Article  Google Scholar 

  35. Zhang, Y., Li, S., Gui, J., Luo, X.: Velocity-level control with compliance to acceleration-level constraints: a novel scheme for manipulator redundancy resolution. IEEE Trans. Ind. Inform. 14(3), 921–930 (2018)

    Google Scholar 

  36. Guo, D., Zhang, Y.: Acceleration-level inequality-based MAN scheme for obstacle avoidance of redundant robot manipulators. IEEE Trans. Ind. Electron. 61(12), 6903–6914 (2014)

    Article  Google Scholar 

  37. Zhang, Z., et al.: A varying-parameter convergent-differential neural network for solving joint-angular-drift problems of redundant robot manipulators. IEEE/ASME Trans. Mechatron. 23(2), 679–689 (2018)

    Article  Google Scholar 

  38. Xiao, L., et al.: Design and analysis of FTZNN applied to the real-time solution of a nonstationary Lyapunov equation and tracking control of a wheeled mobile manipulator. IEEE Trans. Ind. Inform. 14(1), 98–105 (2018)

    Article  Google Scholar 

  39. Zhang, Z., Beck, A., Magnenat-Thalmann, N.: Human-like behavior generation based on head-arms model for robot tracking external targets and body parts. IEEE Trans. Cybern. 45(8), 1390–1400 (2015)

    Article  Google Scholar 

  40. Chen, D., Zhang, Y.: A hybrid multi-objective scheme applied to redundant robot manipulators. IEEE Trans. Autom. Sci. Eng. 14(3), 1337–1350 (2017)

    Article  Google Scholar 

  41. Li, S., Chen, S., Liu, B., Li, Y., Liang, Y.: Decentralized kinematic control of a class of collaborative redundant manipulators via recurrent neural networks. Neurocomputing 91, 1–10 (2012)

    Article  Google Scholar 

  42. Li, S., He, J., Li, Y., Rafique, U.: Distributed recurrent neural networks for cooperative control of manipulators: a game-theoretic perspective. IEEE Trans. Neural Netw. Learn. Syst. 28(2), 415–426 (2017)

    Article  MathSciNet  Google Scholar 

  43. Jin, L., Zhang, Y.: G2-type SRMPC scheme for synchronous manipulation of two redundant robot arms. IEEE Trans. Cybern. 45(2), 153–164 (2015)

    Article  MathSciNet  Google Scholar 

  44. Hou, Z.G., Cheng, L., Tan, M.: Multicriteria optimization for coordination of redundant robots using a dual neural network. IEEE Trans. Syst. Man Cybern. B Cybern. 40(4) 1075–1087 (2010)

    Google Scholar 

  45. Jin, L., Li, S., Luo, X., Li, Y., Qin, B.: Neural dynamics for cooperative control of redundant robot manipulators. IEEE Trans. Ind. Inform. 14(9), 3812–3821 (2018)

    Article  Google Scholar 

  46. Zhang, Y., Li, S.: A neural controller for image-based visual servoing of manipulators with physical constraints. IEEE Trans. Neural Netw. Learn. Syst. 29(11), 5419–5429 (2018)

    Article  MathSciNet  Google Scholar 

  47. Jin, L., Li, S.: Distributed task allocation of multiple robots: a control perspective. IEEE Trans. Syst. Man Cybern. Syst. 48(5), 693–701 (2018)

    Article  Google Scholar 

  48. Wang, Z., et al.: Neural network learning adaptive robust control of an industrial linear motor-driven stage with disturbance rejection ability. IEEE Trans. Ind. Inform. 13(5), 2172–2183 (2017)

    Article  Google Scholar 

  49. Chen, W., Yang, J., Guo, L., Li, S.: Disturbance-observer-based control and related methods-an overview. IEEE Trans. Ind. Electron. 63(2), 1083–1095 (2016)

    Article  Google Scholar 

  50. Liu, F., Li, Y., Cao, Y., She, J., Wu, M.: A two-layer active disturbance rejection controller design for load frequency control of interconnected power system. IEEE Trans. Power Electorn. 31(4), 3320–3321 (2016)

    Article  Google Scholar 

  51. Fedele, G., Ferrise, A.: On the uncertainty on the phase of a stable linear system in the periodic disturbance cancellation problem. IEEE Trans. Autom. Control 61(9), 2720–2726 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  52. Muramatsu, H., Katsura, S.: An Adaptive periodic-disturbance observer for periodic-disturbance suppression. IEEE Trans. Ind. Inform. 14(10), 4446–4456 (2018)

    Article  Google Scholar 

  53. Li, S., Zhou, M., Luo, X.: Modified primal-dual neural networks for motion control of redundant manipulators with dynamic rejection of harmonic noises. IEEE Trans. Neural Netw. Learn. Syst. 29(10), 4791–4801 (2018)

    Article  MathSciNet  Google Scholar 

  54. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, New York (2006)

    Google Scholar 

  55. Guo, D., Zhang, Y.: A new inequality-based obstacle-avoidance MVN scheme and its application to redundant robot manipulators. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 42(6), 1326–1340 (2012)

    Article  Google Scholar 

  56. Zhang, Z., Zheng, L., Yu, J., Li, Y., Yu, Z.: Three recurrent neural networks and three numerical methods for solving a repetitive motion planning scheme of redundant robot manipulators. IEEE/ASME Trans. Mechatron. 22(3), 1423–1434 (2017)

    Article  Google Scholar 

  57. Assal, S.F.M.: Learning from hint for the conservative motion of the constrained industrial redundant manipulators. Neural Comput. App. 23(6), 1649–6660 (2013)

    Article  Google Scholar 

  58. Kong, Y., Lu, H., Xue, Y., Xia, H.: Terminal neural computing: finite-time convergence and its applications. Neurocomputing 217, 133–141 (2016)

    Article  Google Scholar 

  59. Dosiek, L., Pillay, P.: Cogging torque reduction in permanent magnet machines. IEEE Trans. Ind. Appl. 43(6), 1565–1571 (2007)

    Article  Google Scholar 

  60. Zhang, Y., Ge, S.S.: Design and analysis of a general recurrent neural network model for time-varying matrix inversion. IEEE Trans. Neural Netw. 16(6), 1477–1490 (2005)

    Article  Google Scholar 

  61. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)

    Book  MATH  Google Scholar 

  62. Gao, X.B.: Exponential stability of globally projected dynamic systems. IEEE Trans. Neural Netw. 14(2), 426–431 (2003)

    Google Scholar 

  63. Oppenheim, A.V., Willsky, A.S.: Signals & Systems. Prentice-Hall, Englewood Cliffs (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y., Li, S., Zhou, X. (2020). Redundancy Resolution with Periodic Input Disturbance. In: Deep Reinforcement Learning with Guaranteed Performance. Studies in Systems, Decision and Control, vol 265. Springer, Cham. https://doi.org/10.1007/978-3-030-33384-3_7

Download citation

Publish with us

Policies and ethics