Skip to main content

Adrenergic Regulation of Energy Metabolism

  • Chapter
  • First Online:
Endocrinology of Physical Activity and Sport

Part of the book series: Contemporary Endocrinology ((COE))

  • 1322 Accesses

Abstract

During exercise, energy turnover increases and adrenergic mechanisms play an important role in this regulation. In addition, increased adrenergic activity during exercise also results in an increased heart rate and in an enhanced force of myocardial contraction as well as in vasoconstriction in the splanchnic circulation, in the kidneys, and in noncontracting muscles. These circulatory changes favor a redistribution of blood flow to exercising muscle as well as an increased cardiac output (Rowell. Human circulation regulation during physical stress. Oxford University Press, New York, 1986). Furthermore, the adrenergic activity stimulates sweat glands and thereby influences thermoregulation, and it causes an increased contractility of skeletal muscle as well as influences exercise-induced suppression of components of the human immune system. In the present chapter, it is demonstrated how adrenergic activity can influence substrate mobilization and utilization both directly and indirectly via secretion of hormones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rowell LR. Human circulation regulation during physical stress. New York: Oxford University Press; 1986.

    Google Scholar 

  2. Victor R, Seals DR, Mark AL. Differential control of heart rate and sympathetic nerve activity during dynamic exercise: insight from direct intraneural recordings in humans. J Clin Invest. 1987;79:508–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Searls DR, Victor RG, Mark AL. Plasma norepinephrine and muscle sympathetic discharge during rhythmic exercise in humans. J Appl Physiol. 1988;65:940–4.

    Article  Google Scholar 

  4. Savard G, Richter EA, Strange S, Kiens B, Christensen NJ, Saltin B. Norepinephrine spillover from skeletal muscle during exercise in humans: role of muscle mass. Am J Phys. 1989;257:H1812–8.

    CAS  Google Scholar 

  5. Nie ZT, Lisjo S, Åstrand PO, Henriksson J. In-vitro stimulation of the rat epitrochlearis muscle II. Effects of catecholamines and nutrients on protein degradation and amino acid metabolism. Acta Physiol Scand. 1989;135:523–9.

    Article  CAS  PubMed  Google Scholar 

  6. Esler M, Jennings G, Korner P, Blomberry P, Sacharias N, Leonard P. Measurement of total and organ-specific norepinephrine kinetics in humans. Am J Phys. 1984;247:E21–8.

    CAS  Google Scholar 

  7. Kjær M, Christensen NJ, Sonne B, Richter EA, Galbo H. Effect of exercise on epinephrine turnover in trained and untrained male subjects. J Appl Physiol. 1985;59:1061–7.

    Article  PubMed  Google Scholar 

  8. Kjær M, Secher NH, Bach FW, Galbo H. Role of motor center activity for hormonal changes and substrate mobilization in exercising man. Am J Phys. 1987;253:R687–95.

    Article  Google Scholar 

  9. Vissing J, Iwamoto GA, Rybicki KJ, Galbo H, Mitchell JH. Mobilization of glucoregulatory hormones and glucose by hypothalamic locomotor centers. Am J Phys. 1989;257:E722–8.

    Article  CAS  Google Scholar 

  10. Galbo H, Kjær M, Secher NH. Cardiovascular, ventilatory and catecholamine responses to maximal dynamic exercise in partially curarized man. J Physiol. 1987;389:557–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kjær M, Secher NH, Bach FW, Sheikh S, Galbo H. Hormonal and metabolic responses to exercise in humans: effect of sensory nervous blockade. Am J Phys. 1989;257:E95–101.

    Google Scholar 

  12. Kjær M, Secher NH, Bach FW, Galbo H, Reeves DR, Mitchell JH. Hormonal, metabolic and cardiovascular responses to static exercise in man: influence of epidural anesthesia. Am J Phys. 1991;261:214–20.

    Google Scholar 

  13. Klokker M, Kjær M, Secher NH, Hanel B, Worm L, Kappel M, et al. Natural killer cell response to exercise in humans: effect of hypoxia and epidural anesthesia. J Appl Physiol. 1995;78:709–16.

    Article  CAS  PubMed  Google Scholar 

  14. Vissing J, Iwamoto GA, Fuchs IE, Galbo H, Mitchell JH. Reflex control of glucoregulatory exercise responses by group III and IV muscle afferents. Am J Phys. 1994;266:R824–30.

    CAS  Google Scholar 

  15. Vissing J, Lewis SF, Galbo H, Haller RG. Effect of deficient muscular glycogenolysis on extramuscular fuel production in exercise. J Appl Physiol. 1992;72:1773–9.

    Article  CAS  PubMed  Google Scholar 

  16. Vissing J, Galbo H, Haller R. Paradoxically enhanced glucose production during exercise in humans with blocked glycolysis due to muscle phosphofructokinase deficiency. Neurology. 1996;47:766–71.

    Article  CAS  PubMed  Google Scholar 

  17. Vissing J, Galbo H, Haller RG. Exercise fuel mobilization in mitochondrial myopathy: a metabolic dilemma. Ann Neurol. 1996;40:655–62.

    Article  CAS  PubMed  Google Scholar 

  18. Winder WW, Hagberg JM, Hickson RC, Ehsani AA, McLane JA. Time course of sympathoadrenergic adaptation to endurance exercise training in man. J Appl Physiol. 1978;45:370–4.

    Article  CAS  PubMed  Google Scholar 

  19. Svedenhag J. The sympathoadrenal system in physical conditioning. Acta Physiol Scand. 1985;125(Suppl 543):1–74.

    Google Scholar 

  20. Kjær M, Bangsbo J, Lortie G, Galbo H. Hormonal response to exercise in man: influence of hypoxia and physical training. Am J Phys. 1988;254:R197–203.

    Google Scholar 

  21. Dela F, Mikines KJ, Linstow M, Galbo H. Heart rate and plasma catecholamines during 24 hour everyday life in trained and untrained men. J Appl Physiol. 1992;73:2389–95.

    Article  CAS  PubMed  Google Scholar 

  22. Kjær M, Mikines KJ, Christensen NJ, Tronier B, Vinten J, Sonne B, et al. Glucose turnover and hormonal changes during insulin-induced hypoglycemia in trained humans. J Appl Physiol. 1984;57:21–7.

    Article  PubMed  Google Scholar 

  23. Kjær M, Farrel PA, Christensen NJ, Galbo H. Increased epinephrine response and inaccurate glucoregulation in exercising athletes. J Appl Physiol. 1986;61:1693–700.

    Article  PubMed  Google Scholar 

  24. Kjær M, Galbo H. The effect of physical training on the capacity to secrete epinephrine. J Appl Physiol. 1988;64:11–6.

    Article  PubMed  Google Scholar 

  25. LeBlanc J, Jobin M, Cote J, Samson P, Labri A. Enhanced metabolic response to caffeine in exercise-trained human subjects. J Appl Physiol. 1985;59:832–7.

    Article  CAS  PubMed  Google Scholar 

  26. Stallknecht B, Kjær M, Ploug T, Maroun L, Ohkuwa T, Vinten J, et al. Diminished epinephrine response to hypoglycemia despite enlarged adrenal medulla in trained rats. Am J Phys. 1990;259:R998–1003.

    Article  CAS  Google Scholar 

  27. Kjær M, Mikines KJ, Linstow M, Nicolaisen T, Galbo H. Effect of 5 weeks detraining on epinephrine response to insulin induced hypoglycemia in athletes. J Appl Physiol. 1992;72:1201–5.

    Article  PubMed  Google Scholar 

  28. Kjær M, Kiens B, Hargreaves M, Richter EA. Influence of active muscle mass on glucose homeostasis during exercise in humans. J Appl Physiol. 1991;71:552–7.

    Article  PubMed  Google Scholar 

  29. Marliss EB, Simantirakis E, Miles PDG, Purnon C, Gougeon R, Field CJ, et al. Glucoregulatory and hormonal responses to repeated bouts of intense exercise in normal male subjects. J Appl Physiol. 1991;71:924–33.

    Article  CAS  PubMed  Google Scholar 

  30. Sigal R, Fisher SF, Halter JB, Vranic M, Marliss EB. The roles of catecholamines in glucoregulation in intense exercise as defined by the islet cell clamp technique. Diabetes. 1996;45:148–56.

    Article  CAS  PubMed  Google Scholar 

  31. Kjær M, Pollack SF, Mohr T, Weiss H, Gleim GW, Bach FW, et al. Regulation of glucose turnover and hormonal responses during exercise: electrical induced cycling in tetraplegic humans. Am J Phys. 1996;271:R191–9.

    Google Scholar 

  32. Richter EA, Galbo H, Holst JJ, Sonne B. Significance of glucagon for insulin secretion and hepatic glycogenolysis during exercise in rats. Horm Metab Res. 1981;13:323–6.

    Article  CAS  PubMed  Google Scholar 

  33. Sonne B, Mikines KJ, Richter EA, Christensen NJ, Galbo H. Role of liver nerves and adrenal medulla in glucose turnover of running rats. J Appl Physiol. 1985;59:1640–6.

    Article  CAS  PubMed  Google Scholar 

  34. Arnall DA, Marker JC, Conlee RK, Winder WW. Effect of infusing epinephrine on liver and muscle glycogenolysis during exercise in rats. Am J Phys. 1986;250:E641–9.

    CAS  Google Scholar 

  35. Carlson KI, Marker JC, Arnall DA, Terry ML, Yang HT, Lindsay LG, et al. Epinephrine is unessential for stimulation of liver glycogenolysis during exercise. J Appl Physiol. 1985;58:544–8.

    Article  CAS  PubMed  Google Scholar 

  36. Marker JC, Arnall DA, Conlee RK, Winder WW. Effect of adrenodemedullation on metabolic responses to high intensity exercise. Am J Phys. 1986;251:R552–9.

    CAS  Google Scholar 

  37. Winder WW, Arogyasami J, Yang HT, Thompson KG, Nelson A, Kelly KP, et al. Effects of glucose infusion in exercising rats. J Appl Physiol. 1988;64:2300–5.

    Article  CAS  PubMed  Google Scholar 

  38. Moates JM, Lacy DB, Goldstein RE, Cherrington AD, Wasserman DH. The metabolic role of the exercise induced increment in epinephrine in the dog. Am J Phys. 1988;255:E428–36.

    CAS  Google Scholar 

  39. Hoelzer DR, Dalsky GP, Schwartz NS, Clutter WE, Shah SD, Holloszy JO, et al. Epinephrine is not critical to prevention of hypoglycemia during exercise in humans. Am J Phys. 1986;251:E104–10.

    Article  CAS  Google Scholar 

  40. Wasserman DH, Williams PE, Lacy DB, Bracy D, Cherrington AD. Hepatic nerves are not essential to the increase in hepatic glucose production during muscular work. Am J Phys. 1990;259:E195–203.

    CAS  Google Scholar 

  41. Wasserman DH, Cherrington AD. Regulation of extramuscular fuel sources during exercise. In: Rowell LB, Shepherd JT, editors. Handbook of physiology. Columbia: Bermedica Production; 1996. p. 1036–74.

    Google Scholar 

  42. Kjær M, Engfred K, Fernandes A, Secher NH, Galbo H. Regulation of hepatic glucose production during exercise in man: role of sympathoadrenergic activity. Am J Phys. 1993;265:E275–83.

    Google Scholar 

  43. Kjær M, Keiding S, Engfred K, Rasmussen K, Sonne B, Kirkegård P, et al. Glucose homeostasis during exercise in humans with a liver or kidney transplant. Am J Phys. 1995;268:E636–44.

    Article  Google Scholar 

  44. Kjær M, Jurlander J, Keiding S, Galbo H, Kirkegaard P, Hage E. No reinnervation of hepatic sympathetic nerves after liver transplantation in human subjects. J Hepatol. 1994;20:97–100.

    Article  PubMed  Google Scholar 

  45. Coker RH, Krishna MG, Brooks Lacy D, Allen EJ, Wasserman DH. Sympathetic drive to liver and nonhepatic splanchnic tissue during heavy exercise. J Appl Physiol. 1997;82:1244–9.

    Article  CAS  PubMed  Google Scholar 

  46. Coker RH, Krishna MG, Brooks Lacy D, Bracy DP, Wasserman DH. Role of hepatic alpha- and beta-adrenergic receptor stimulation on hepatic glucose production during heavy exercise. Am J Phys. 1997;273:E831–8.

    CAS  Google Scholar 

  47. Richter EA. Glucose utilization. In: Rowell LB, Shepherd JT, editors. Handbook of physiology 1997. Columbia: Bermedica Production; 1996. p. 912–51.

    Google Scholar 

  48. Ploug T, Galbo H, Richter EA. Increased muscle glucose uptake during contractions: no need for insulin. Am J Phys. 1984;247:E726–31.

    CAS  Google Scholar 

  49. Issekutz B. Effect of epinephrine on carbohydrate metabolism in exercising dogs. Metabolism. 1985;34:457–64.

    Article  CAS  PubMed  Google Scholar 

  50. Jansson E, Hjemdahl P, Kaijser L. Epinephrine-induced changes in muscle carbohydrate metabolism during exercise in male subjects. J Appl Physiol. 1986;60:1466–70.

    Article  CAS  PubMed  Google Scholar 

  51. Richter EA, Ruderman NB, Gavras H, Belur ER, Galbo H. Muscle glycogenolysis during exercise: dual control by epinephrine and contractions. Am J Phys. 1982;242:E25–32.

    Article  CAS  Google Scholar 

  52. Spriet LL, Ren JM, Hultman E. Epinephrine infusion enhances glycogenolysis during prolonged electrical stimulation. J Appl Physiol. 1988;64:1439–44.

    Article  CAS  PubMed  Google Scholar 

  53. Chesley A, Hultman E, Spriet LL. Effects of epinephrine infusion on muscle glycogenolysis during intense aerobic exercise. Am J Phys. 1995;268:E127–34.

    Article  CAS  Google Scholar 

  54. Richter EA, Galbo H, Christensen NJ. Control of exercise induced muscular glycogenolysis by adrenal medullary hormones in rats. J Appl Physiol. 1981;50:21–6.

    Article  PubMed  Google Scholar 

  55. Wahrenberg H, Engfeldt P, Bolinder J, Arner P. Acute adaptation in adrenergic control of lipolysis during physical exercise in humans. Am J Phys. 1987;253:E383–90.

    CAS  Google Scholar 

  56. Arner P, Kriegholm E, Engfeldt P, Bolinder J. Adrenergic regulation of lipolysis in situ at rest and during exercise. J Clin Invest. 1990;85:893–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stallknecht B, Bülow J, Frandsen E, Galbo H. Desensitization of human adipose tissue to adrenaline stimulation studied by microdialysis. J Physiol. 1997;500:271–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Karlsson AK, Elam M, Friberg P, Biering-Sørensen F, Sullivan L, Lønnroth P. Regulation of lipolysis by the sympathetic nervous system: a microdialysis study in normal and spinal cord injured subjects. Metabolism. 1997;46:388–94.

    Article  CAS  PubMed  Google Scholar 

  59. Oscai LB, Essig DA, Palmer WK. Lipase regulation of muscle triglyceride hydrolysis. J Appl Physiol. 1990;69:1571–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kjær .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kjær, M., Lange, K. (2020). Adrenergic Regulation of Energy Metabolism. In: Hackney, A., Constantini, N. (eds) Endocrinology of Physical Activity and Sport. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-030-33376-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33376-8_9

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-33375-1

  • Online ISBN: 978-3-030-33376-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics