Skip to main content

Methodological Considerations in Exercise Endocrinology

  • Chapter
  • First Online:
Endocrinology of Physical Activity and Sport

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

The intent of this chapter is to provide an overview of the background information on methodological factors that influence and add variance to endocrine outcome measurements typically used in exercise studies. It is well established that numerous factors such as sex, ambient temperature, age, and training status can influence hormonal responses to exercise, but measurements can also be dramatically influenced by simply the means chosen to sample specimens (e.g., venipuncture vs. catheterization). Lack of knowledge and experience with such influencing factors can compromise the accuracy and validity of exercise endocrinology research. Our purpose in doing this chapter is to aid and improve the quality of exercise science research of investigators inexperienced in endocrinology. For the purpose of this review, we categorized influencing factors as those that are “physiological” and those that are “procedural-analytical” and address steps and actions researchers can take to account for their influence. It is recommended that researchers should design their studies to monitor, control, and adjust for the physiological and procedural-analytical factors discussed within this chapter. By doing so, they will find less variance in their hormonal outcomes and thereby will increase the validity of their physiological data. These actions can assist the researcher in the interpretation and understanding of endocrine data and, in turn, make their research more scientifically rigorous.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trembly MS, Chu SY, Mureika R. Methodological and statistical considerations for exercise-related hormone evaluations. Sports Med. 1990;20(2):90–108.

    Article  Google Scholar 

  2. Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005;35(4):339–61.

    Article  PubMed  Google Scholar 

  3. McMurray RG, Hackney AC. The endocrine system and exercise. In: Garrett W, editor. Sports medicine. New York: Williams & Wilkins; 2000. p. 135–62.

    Google Scholar 

  4. International Union of Pure and Applied Chemistry (International Union of Biochemistry and Molecular Biology): recommendations on organic & biochemical nomenclature, symbols & terminology. www.chem.qmul.ac.uk/iupac/.

  5. Warne GL, Kanumakala S. Molecular endocrinology of sex differentiation. Sem Reprod Med. 2002;20(3):169–80.

    Article  CAS  Google Scholar 

  6. Webb ML, Wallace JP, Hamill C, Hodgson JL, Mashaly MM. Serum testosterone concentration during two hours of moderate intensity treadmill running in trained and untrained men and women. Endocrinol Res. 1984;10:27–38.

    Article  CAS  Google Scholar 

  7. Bunt JC, Bahr JM, Bemben DA. Comparison of estradiol and testosterone levels during and immediately following prolonged exercise in moderately active males and females. Endocrinol Res. 1987;13:157–72.

    Article  CAS  Google Scholar 

  8. Pedersen BK, Hoffman-Goetz L. Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev. 2000;80:1055–81.

    Article  CAS  PubMed  Google Scholar 

  9. Foster DL, Nagatani S. Physiological perspectives on leptin as a regulator of reproduction: role in timing puberty. Biol Reprod. 1999;60(2):205–12.

    Article  CAS  PubMed  Google Scholar 

  10. Ruby BC, Robergs RA. Gender differences in substrate utilization during exercise. Sports Med. 1994;17:393–410.

    Article  CAS  PubMed  Google Scholar 

  11. Heavens KR, Szivak TK, Hooper DR, Dunn-Lewis C, Comstock BA, Flanagan SD, Looney DP, Kupchak BR, Maresh CM, Volek JS. The effects of high intensity short rest resistance exercise on muscle damage markers in men and women. J Strength Cond Res. 2014;28:1041–9.

    Article  PubMed  Google Scholar 

  12. Bunt JC. Metabolic actions of estradiol: significance for acute and chronic exercise responses. Med Sci Sports Exerc. 1990;22(3):286–90.

    Article  PubMed  Google Scholar 

  13. Hackney AC, McCracken M, Ainsworth BA. Substrate metabolism responses to submaximal exercise in the mid-follicular and mid-luteal phase of the menstrual cycle. Int J Sport Nutr. 1994;4:299–308.

    Article  CAS  PubMed  Google Scholar 

  14. Hackney AC, McMurray RG, Judelson DA, Harrell JS. Relationship between caloric intake, body composition, and physical activity to leptin, thyroid hormones, and cortisol in adolescents. Jpn J Physiol. 2003;53(6):475–9.

    Article  CAS  PubMed  Google Scholar 

  15. Horswill CA, Zipf WB, Kien CL, Kahl EB. Insulin’s contribution to growth in children and the potential for exercise to mediate insulin’s action. Pediatr Exerc Sci. 1997;9:18–32.

    Article  Google Scholar 

  16. Amile SA, Caprio S, Sherwin RS, Plewe G, Haymond MW, Tamborlane WV. Insulin resistance of puberty: a defect restricted to peripheral glucose metabolism. J Clin Endocrinol Metab. 1991;72:277–82.

    Article  Google Scholar 

  17. Isurugi K, Fukutani K, Takayasu H, Wakabayashi K, Tamaoki B. Age related changes in serum LH and FSH level in normal men. J Clin Endocrinol Metab. 1974;39:955–7.

    Article  CAS  PubMed  Google Scholar 

  18. Purifoy EE, Koopmars LH, Tatum RW. Steroid hormones and aging: free testosterone, testosterone and androstenedione in normal females age 20–87 years. Hum Biol. 1980;52:181–91.

    CAS  PubMed  Google Scholar 

  19. Orentreich N, Brind JL, Rizer RL, Vogelman JH. Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. J Clin Endocrinol Metab. 1984;59:551–5.

    Article  CAS  PubMed  Google Scholar 

  20. Brook MS, Wilkinson DJ, Mitchell WK, Lund JN, Phillips BE, Szewczyk NJ, Greenhaff PL, Smith K, Atherton PJ. Synchronous deficits in cumulative muscle protein synthesis and ribosomal biogenesis underlie age-related anabolic resistance to exercise in humans. J Physiol. 2016;594:7399–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aloia JF, Feuerman M, Yeh JK. Reference range for serum parathyroid hormone. Endocr Pract. 2006;12(2):137–44.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Adlercreutz H, Goldin BR. Estrogen metabolism and excretion in Oriental and Caucasian women. J Natl Cancer Inst. 1994;86:1076–82.

    Article  CAS  PubMed  Google Scholar 

  23. Benn PA, Clive JM, Collins R. Medians for second trimester maternal serum AFP, unconjugated estriol, and hCG: differences between race or ethnic groups. Clin Chem. 1997;43:333–7.

    Article  CAS  PubMed  Google Scholar 

  24. Mittelmark RA. Hormonal responses to exercise in pregnancy. In: Mittelmark RA, Wiswell RA, Drinkwater BL, editors. Exercise in pregnancy. Baltimore: Williams & Wilkins; 1991. p. 175–84.

    Google Scholar 

  25. Wang C, Christenson P, Swerdloff R. Clinical relevance of racial and ethnic differences in sex steroids. J Clin Endocrinol Metab. 2007;92(7):2433–5.

    Article  CAS  PubMed  Google Scholar 

  26. Abbott WG, Foley JE. Comparison of body composition, adipocyte size, and glucose and insulin concentrations in Pima Indian and Caucasian children. Metabolism. 1987;36(6):576–9.

    Article  CAS  PubMed  Google Scholar 

  27. Punjani N, Nayan M, Grober E, Lo K, Lau S, Jarvi K. The effect of ethnicity and race on semen analysis and hormones in the infertile patient. J Urol. 2018;199:e248.

    Google Scholar 

  28. Fink J, Matsumoto M, Tamura Y. Potential application of testosterone replacement therapy as treatment for obesity and type 2 diabetes in men. Steroids. 2018;138:161–6.

    Article  CAS  PubMed  Google Scholar 

  29. Ivandic A, Prpic-Krizevac I, Sucic M. Hyperinsulinemia and sex hormone in healthy premenopausal women: relative contribution of obesity, obese type, and duration of obesity. Metabolism. 1998;47:13–9.

    Article  CAS  PubMed  Google Scholar 

  30. Hansen BC, Jen KL, Pek SB. Rapid oscillations on plasma insulin, glucagons, and glucose in obese and normal weight humans. J Clin Endocrinol Metab. 1982;54(4):785–92.

    Article  CAS  PubMed  Google Scholar 

  31. Florkowski CM, Collier GR, Zimmet PZ. Low dose growth hormone replacement lowers plasma leptin and fat stores without affecting body mass index in adults with growth hormone deficiency. Clin Endocrinol. 1996;45:769–73.

    Article  CAS  Google Scholar 

  32. Pasquali R, Vicennati V. Activity of the hypothalamic-pituitary-adrenal axis in different obese phenotypes. Int J Obes Relat Metab Disord. 2000;24(Suppl 3):S47–9.

    Article  CAS  PubMed  Google Scholar 

  33. McMurray RG, Hackney AC. Interactions of metabolic hormones, adipose tissue and exercise. Sports Med. 2005;35(5):393–412.

    Article  PubMed  Google Scholar 

  34. Hurley BF, Nemeth PM, Martin WH. Muscle triglyceride utilization during exercise: effect of training. J Appl Physiol. 1986;60:562–7.

    Article  CAS  PubMed  Google Scholar 

  35. Rahkila P, Soimajarvi J, Karvinrn E. Lipid metabolism during exercise II: respiratory exchange ratio and muscle glycogen content during 4 h bicycle ergometry and two groups of health men. Eur J Appl Physiol. 1980;44(3):246–54.

    Article  Google Scholar 

  36. Pasman WJ, Westertrep-Plantenga MS, Saris WHM. The effect of exercise training on leptin levels in obese males. Am J Physiol Endocrinol Metab. 1998;37:E280–6.

    Article  Google Scholar 

  37. Ryan AS, Partley RE, Elahi D. Changes in leptin and insulin action with resistive training in postmenopausal women. Int J Obes Relat Metab Disord. 2000;24:27–32.

    Article  CAS  PubMed  Google Scholar 

  38. Rabkin JG, Wagner GJ, Rabkin R. A double-blind, placebo-controlled trial of testosterone therapy for HIV-positive men with hypogonadal symptoms. Arch Gen Psychiatry. 2000;57:141–7.

    Article  CAS  PubMed  Google Scholar 

  39. Grossmann M. Low testosterone in men with type 2 diabetes: significance and treatment. J Clin Endocrinol Metab. 2011;96:2341–53.

    Article  CAS  PubMed  Google Scholar 

  40. Wong N, Levy M, Stephenson I. Hypogonadism in the HIV-infected man. Curr Treat Options Infect Dis. 2017;9:104–16.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hackney AC. Stress and the neuroendocrine system: the role of exercise as a stressor and modifier of stress. Expert Rev Endocrinol Metab. 2006;1(6):783–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dorn LD, Burgress ES, Dichek HL, Putman FW, Chrousos GP, Gold PW. Thyroid hormone concentrations in depressed and nondepressed adolescents: group difference and behavioral relations. J Am Acad Child Adolesc Psychiatry. 1996;35:299–306.

    Article  CAS  PubMed  Google Scholar 

  43. Vaernes R, Ursin H, Darragh A, Lambe R. Endocrine response patterns and psychological correlates. J Psychosom Res. 1982;26:123–31.

    Article  CAS  PubMed  Google Scholar 

  44. Hackney AC. Exercise as a stressor to the neuroendocrine system. Medicina. 2006;42(10):788–97.

    PubMed  Google Scholar 

  45. Hammer MB, Hitri A. Plasma β-endorphin levels in post-traumatic stress disorder: a preliminary report on response to exercise-induced stress. J Neuropsychiatry Clin Neurosci. 1992;4(1):59–63.

    Article  Google Scholar 

  46. Gerra G, Volpi R, Delsignore R, et al. ACTH and β-endorphin responses to physical exercise in adolescent women tested for anxiety and frustration. Psychiatry Res. 1992;41(2):179–86.

    Article  CAS  PubMed  Google Scholar 

  47. Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J Health Soc Behav. 1983;24(4):385–96.

    Article  CAS  PubMed  Google Scholar 

  48. Beck AT, Epstein N, Brown G, Steer RA. An inventory for measuring clinical anxiety: psychometric properties. J Consult Clin Psychol. 1988;56(6):893–7.

    Article  CAS  PubMed  Google Scholar 

  49. Landgren B, Aedo A, Diczfalusy E. Hormonal changes associated with ovulation and luteal function. In: Flamigni C, Givens J, editors. The gonadotropins: basic science and clinical aspects in females. London: Academic; 1982. p. 200–12.

    Google Scholar 

  50. Hackney AC, Cyren HC, Brammeier M, Sharp RL. Effects of the menstrual cycle on insulin-glucose at rest and in response to exercise. Biol Sport. 1993;10(2):73–81.

    PubMed  Google Scholar 

  51. Vanheest JL, Mahoney CE, Rodgers CD. Oral contraceptive use and physical performance. In: Kraemer WJ, Rogol A, editors. The endocrine system in sports and exercise. Oxford: Blackwell; 2005. p. 250–60.

    Chapter  Google Scholar 

  52. Loucks AB. Physical activity, fitness and female reproductive morbidity. In: Bouchard C, Shepard RJ, Stephens T, editors. Physical activity, fitness and health: international proceedings and consensus statement. Champaign: Human Kinetics; 1994. p. 943–54.

    Google Scholar 

  53. Matsumoto AM, Bremner WJ. Modulation of pulsatile gonadotropin secretion by testosterone in man. J Clin Endocrinol Metab. 1984;58(4):609–14.

    Article  CAS  PubMed  Google Scholar 

  54. Rose R, Kreutz L, Holoday J, Sulak K, Johnson C. Diurnal variation of plasma testosterone and cortisol. J Endocrinol. 1972;54:177–8.

    Article  CAS  PubMed  Google Scholar 

  55. Rose SR, Nisula BC. Circadian variation of thyrotropin in childhood. J Clin Endocrinol Metab. 1989;68:1086–9.

    Article  CAS  PubMed  Google Scholar 

  56. Hackney AC, Viru A. Twenty-four cortisol response to multiple daily exercise sessions of moderate and high intensity. Clin Physiol. 1999;19:178–82.

    Article  CAS  PubMed  Google Scholar 

  57. Weitzman ED. Circadian rhythms and episodic hormone secretion. Annu Rev Med. 1976;27:225–43.

    Article  CAS  PubMed  Google Scholar 

  58. Goodman HM. Endocrinology concepts for medical students. Adv Physiol Educ. 2005;25(4):213–24.

    Article  Google Scholar 

  59. Hackney AC, Zack E. Physiological day-to-day variability of select hormones at rest in exercise-trained men. J Endocrinol Investig. 2006;29(6):RC9–12.

    Article  CAS  Google Scholar 

  60. Schulz P, Knabe R. Biological uniqueness and the definition of normality: part 2—the endocrine ‘finger print’ of healthy adults. Med Hypotheses. 1994;42:63–8.

    Article  CAS  PubMed  Google Scholar 

  61. Antonio L, Wu FC, O’neill TW, Pye SR, Ahern TB, Laurent MR, Huhtaniemi IT, Lean ME, Keevil BG, Rastrelli G. Low free testosterone is associated with hypogonadal signs and symptoms in men with normal total testosterone. J Clin Endocrinol Metabol. 2016;101:2647–57.

    Article  CAS  Google Scholar 

  62. Finberg JP, Berlyne GM. Renin and aldosterone secretion following acute environmental heat exposure. Isr J Med Sci. 1976;12:844–7.

    CAS  PubMed  Google Scholar 

  63. Galbo H, Houston ME, Christensen NJ, Holst JJ, Nielsen B, Nygaard E, et al. The effect of water temperature on the hormonal response to prolonged swimming. Acta Physiol Scand. 1979;105(3):326–37.

    Article  CAS  PubMed  Google Scholar 

  64. Mordes JP, Blume FD, Boyer S, Zheng MR, Braverman LE. High altitude pituitary-thyroid dysfunction on Mount Everest. N Engl J Med. 1983;308:1135–8.

    Article  CAS  PubMed  Google Scholar 

  65. Rastogi GK, Malhotra MS, Srivastava MC, Shawhney RC, Dua GL, Sridharan K, et al. Study of the pituitary-thyroid function at high altitude in man. J Clin Endocrinol Metab. 1977;43:447–52.

    Article  Google Scholar 

  66. Hoyt RW, Honig A. Body fluid and energy metabolism at high altitude. In: Fregley MJ, Blatteis CM, editors. Handbook of physiology, section 4: environmental physiology. New York: Oxford University Press; 1996. p. 1277–89.

    Google Scholar 

  67. Galbo H, Holst JJ, Christensen NJ. The effect of different diets and of insulin on the hormonal response to prolonged exercise. Acta Physiol Scand. 1979;107(1):19–32.

    Article  CAS  PubMed  Google Scholar 

  68. Phinney SD, Horton ES, Sims EA, Hanson JS, Danforth E, LaGrange BM. Capacity for moderate exercise in obese subjects after adaptation to a hypocaloric, ketogenic diet. J Clin Invest. 1980;66(5):1152–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jezova-Repcekova D, Vigas M, Klimes I. Decreased plasma cortisol response to pharmacological stimuli after glucose load in man. Endocrinol Exp. 1980;14(2):113–20.

    CAS  PubMed  Google Scholar 

  70. Bonen A, Belcastro AN, MacIntyre K, Gardner J. Hormonal responses during intense exercise preceded by glucose ingestion. Can J Appl Sport Sci. 1980;5(2):85–90.

    CAS  PubMed  Google Scholar 

  71. Ivy J, Portman R. Nutrient timing system: the revolutionary new system that adds the missing dimension to sports nutrition: the dimension of time. North Bergen: Basic Health; 2004. p. 33–67.

    Google Scholar 

  72. Kerksick C, Harvey T, Stout J, Campbell B, Wilborn C, Kreider R, et al. International Society of Sports Nutrition position stand: nutrient timing. J Int Soc Sports Nutr. 2008;5:17–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Bishop NC, Blannin AK, Robson PJ, Walsh NP, Gleeson M. The effects of carbohydrate supplementation on immune responses to a soccer-specific exercise protocol. J Sports Sci. 1999;17(10):787–96.

    Article  CAS  PubMed  Google Scholar 

  74. Bishop NC, Gleeson M, Nicholas CW, Ali A. Influence of carbohydrate supplementation on plasma cytokine and neutrophil degranulation responses to high intensity intermittent exercise. Int J Sport Nutr Exerc Metab. 2002;12(2):145–56.

    Article  CAS  PubMed  Google Scholar 

  75. Lancaster GI, Jentjens RL, Moseley L, Jeukendrup AE, Gleeson M. Effect of pre-exercise carbohydrate ingestion on plasma cytokine, stress hormone, and neutrophil degranulation responses to continuous, high-intensity exercise. Int J Sport Nutr Exerc Metab. 2003;13(4):436–53.

    Article  CAS  PubMed  Google Scholar 

  76. Rokitzki L, Logemann E, Huber G, Keck E, Keul J. Alpha-Tocopherol supplementation in racing cyclists during extreme endurance training. Int J Sport Nutr. 1994;4(3):253–64.

    Article  CAS  PubMed  Google Scholar 

  77. Nieman DC. Influence of carbohydrate on the immune response to intensive, prolonged exercise. Exerc Immunol Rev. 1998;4:64–76.

    CAS  PubMed  Google Scholar 

  78. Nieman DC, Davis JM, Henson DA, Walberg-Rankin J, Shute M, Dumke CL, et al. Carbohydrate ingestion influences skeletal muscle cytokine mRNA and plasma cytokine levels after a 3-h run. J Appl Physiol. 2003;94(5):1917–25.

    Article  CAS  PubMed  Google Scholar 

  79. Tipton KD, Rasmussen BB, Miller SL, Wolf SE, Owens-Stovall SK, Petrini BE, et al. Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol Endocrinol Metab. 2001;281(2):E197–206.

    Article  CAS  PubMed  Google Scholar 

  80. Hsu MC, Chien KY, Hsu CC, Chung CJ, Chan KH, Su B. Effects of BCAA, arginine and carbohydrate combined drink on post-exercise biochemical response and psychological condition. Chin J Physiol. 2011;54(2):71–8.

    Article  CAS  PubMed  Google Scholar 

  81. Betts JA, Beelen M, Stokes KA, Saris WH, van Loon LJ. Endocrine responses during overnight recovery from exercise: impact of nutrition and relationships with muscle protein synthesis. Int J Sport Nutr Exerc Metab. 2011;21(5):398–409.

    Article  CAS  PubMed  Google Scholar 

  82. La Bounty PM, Campbell BI, Wilson J, Galvan E, Berardi J, Kleiner SM, et al. International Society of Sports Nutrition position stand: meal frequency. J Int Soc Sports Nutr. 2011;8:4.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Schwarz NA, Rigby BR, La Bounty P, Shelmadine B, Bowden RG. A review of weight control strategies and their effects on the regulation of hormonal balance. J Nutr Metab. 2011;2011:237932.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Støving RK, Hangaard J, Hansen-Nord M, Hagen C. A review of endocrine changes in anorexia nervosa. J Psychiatr Res. 1999;33(2):139–52.

    Article  PubMed  Google Scholar 

  85. Casper RC. Recognizing eating disorders in women. Psychopharmacol Bull. 1998;34(3):267–9.

    CAS  PubMed  Google Scholar 

  86. Södersten P, Bergh C, Zandian M. Psychoneuroendocrinology of anorexia nervosa. Psychoneuroendocrinology. 2006;31(10):1149–53.

    Article  PubMed  CAS  Google Scholar 

  87. VanHelder T, Radomski MW. Sleep deprivation and the effect on exercise performance. Sports Med. 1989;7:235–47.

    Article  CAS  PubMed  Google Scholar 

  88. Aakvaag A, Bentdal O, Quigstad K, Walstad P, Ronningen H, Fonnum F. Testosterone and testosterone binding globulin (TeBG) in young men during prolonged stress. Int J Androl. 1978;1:22–31.

    Article  CAS  Google Scholar 

  89. Aakvaag A, Sand T, Opstad PO, Fonnum F. Hormonal changes in serum in young men during prolonged physical strain. Eur J Appl Physiol. 1978;39:283–91.

    Article  CAS  Google Scholar 

  90. Diamond P, Brisson GR, Candas B, Peronnet F. Trait anxiety, submaximal physical exercise and blood androgens. Eur J Appl Physiol. 1989;58:699–704.

    Article  CAS  Google Scholar 

  91. Hackney AC, Feith S, Pozos R, Seale J. Effects of high altitude and cold exposure on resting thyroid hormone concentrations. Aviat Space Environ Med. 1995;66:325–9.

    CAS  PubMed  Google Scholar 

  92. Viru A, Hackney AC, Valja E, Karelson K, Janson T, Viru M. Influence of prolonged continuous exercise on hormonal responses to subsequent intensive exercise. Eur J Appl Physiol. 2001;85:578–85.

    Article  CAS  PubMed  Google Scholar 

  93. Hackney AC. The neuro-endocrine system, overload training, and regeneration. In: Lehmann M, editor. Ulm international conference proceeding: performance, overload training and regeneration. London: Plenum; 1999. p. 173–86.

    Google Scholar 

  94. Viru A, Karelson K, Smirnova T. Stability and variability in hormonal responses to prolonged exercise. Int J Sports Med. 1992;13:230–5.

    Article  CAS  PubMed  Google Scholar 

  95. Hartley LH, Mason JW, Hogan RP, Jones LG, Kotchen TA, Mougey EH, et al. Multiple hormonal responses to graded exercise in relation to physical training. J Appl Physiol. 1972;33(5):602–6.

    Article  CAS  PubMed  Google Scholar 

  96. Richter EA, Sutton JR. Hormonal adaptation to physical activity. In: Bouchard C, Shephard RJ, Stephen T, editors. Physical activity, fitness and health: international proceedings and consensus statement. Champaign: Human Kinetics; 1994. p. 331–42.

    Google Scholar 

  97. Luger A, Deuster PA, Kyle SB, Gallucci WT, Montgomery LC, Gold PW. Acute hypothalamic-pituitary-adrenal responses to the stress of treadmill exercise: physiologic adaptations to physical training. N Engl J Med. 1987;316:1309–15.

    Article  CAS  PubMed  Google Scholar 

  98. Hackney AC, Sinning WE, Brout BC. Comparison of resting reproductive hormonal profiles in endurance trained and untrained men. Med Sci Sports Exerc. 1988;20(1):60–5.

    Article  CAS  PubMed  Google Scholar 

  99. Remes K, Kuoppasalmi K, Adlercreutz H. Effect of long-term physical training on plasma testosterone, androstenedione, luteinizing hormone and sex-hormone binding globulin capacity. Sacnd J Clin Lab Invest. 1979;39:743–9.

    Article  CAS  Google Scholar 

  100. Hakkinen K, Pakarinen A. Acute hormonal responses to two different fatiguing heavy-resistance protocols in male athletes. J Appl Physiol. 1993;74:882–7.

    Article  CAS  PubMed  Google Scholar 

  101. Hackney AC, Aggon E. Chronic low testosterone levels in endurance trained men: the exercise-hypogonadal male condition. J Biochem Physiol. 2018;1(1):pii: 103.

    Google Scholar 

  102. Westendorp RG, Roos AN, Riley LC, Walma S, Frolich M, Mienders AE. Chronic stimulation of atrial natriuretic peptide attenuates the secretory responses to postural changes. Am J Med Sci. 1993;306:371–5.

    Article  CAS  PubMed  Google Scholar 

  103. Fawcett JK, Wynn V. Effects of posture on plasma volume and some blood constituents. J Clin Pathol. 1960;13:304–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen YM, Cintron NM, Whitson PA. Long term storage of salivary cortisol samples at room temperature. Clin Chem. 1992;38:304.

    Article  CAS  PubMed  Google Scholar 

  105. Calam RR. Reviewing the importance of specimen collection. J Am Med Technol. 1977;38:297–300.

    Google Scholar 

  106. Sanntag O. Hemolysis as interference factor in clinical chemistry. J Clin Chem Clin Biochem. 1986;24:575–7.

    Google Scholar 

  107. Obminski Z, Klusiewicz A, Stupnicki R. Changes in salivary and serum cortisol concentrations in junior athletes following exercises of different intensities. Biol Sport. 1994;11:49–57.

    Google Scholar 

  108. Caraway WT. Chemical and diagnostic specificity of laboratory tests. Am J Clin Pathol. 1961;37:445–64.

    Article  Google Scholar 

  109. Kopchick JJ, Sackman-Sala L, Ding J. Primer: molecular tools used for the understanding of endocrinology. Nat Clin Pract Endocrinol Metab. 2007;3(4):355–68.

    Article  CAS  PubMed  Google Scholar 

  110. Bowers LD. Analytical advances in detection of performance enhancing compounds. Clin Chem. 1997;43:1299–304.

    Article  CAS  PubMed  Google Scholar 

  111. Dudley RF. Chemiluminescence immunoassay: an alternative to RIA. Lab Med. 1990;21:216–22.

    Article  Google Scholar 

  112. Shah VP, Midha KK, Findlay JWA, Hill HM, Hulse JD, McGilveray IJ, et al. Bioanalytic method validation - a revisit with a decade of progress. Pharm Res. 2000;17:1551–7.

    Article  CAS  PubMed  Google Scholar 

  113. DeRonde W, Van Der Schouw YT, Pols HAP, Gooren LJG, Muller M, Grobbee DE, et al. Calculation of bioavailable and free testosterone in men: a comparison of 5 published algorithms. Clin Chem. 2006;52(9):1777–84.

    Article  CAS  Google Scholar 

  114. Rosner W, Auchus RJ, Azziz R, Sluss PM, Raff H. Position statement: utility, limitations and pitfalls in measuring testosterone: an Endocrine Society position statement. J Clin Endocrinol Metab. 2007;92:405–13.

    Article  CAS  PubMed  Google Scholar 

  115. Rodbard D. Statistical quality control and routine data processing for radioimmunoassay and immunoradiometric assays. Clin Chem. 1974;20(10):1255–70.

    Article  CAS  PubMed  Google Scholar 

  116. Fraser CG, Harris EK. Generation and application of data on biological variation in clinical chemistry. Crit Rev Clin Lab Sci. 1989;27:409–37.

    Article  CAS  PubMed  Google Scholar 

  117. Hackney AC, Premo MC, McMurray RG. Influence of aerobic versus anaerobic exercise on the relationship between reproductive hormones in men. J Sports Sci. 1995;13(4):305–11.

    Article  CAS  PubMed  Google Scholar 

  118. Veldhuis JD, Johnson ML. Deconvolution analysis of hormone data. Methods Enzymol. 1992;210:539–75.

    Article  CAS  PubMed  Google Scholar 

  119. Kingle RD, Johnson GF. Statistical procedures. In: Tietz NW, editor. Textbook of clinical chemistry. Philadelphia: Saunders; 1986. p. 287–355.

    Google Scholar 

  120. Pincus SM, Hartman ML, Roelfsema F, Thorner MO, Veldhuis JD. Hormone pulsatility discrimination via course and short time sampling. Am J Physiol Endocrinol Metab. 1999;277:E948–57.

    Article  CAS  Google Scholar 

  121. Matthews DR. Time series analysis in endocrinology. Acta Paediatr Scand Suppl. 1988;347:55–62.

    CAS  PubMed  Google Scholar 

  122. Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):1–15.

    Article  CAS  PubMed  Google Scholar 

  123. Mohammadreza H, Xu G. A visitor’s guide to effect sizes—statistical significance versus practical (clinical) importance of research findings. Adv Health Sci Educ Theory Pract. 2004;9(3):1573–7.

    Google Scholar 

  124. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Englewood: Lawrence Erlbaum; 1988. p. 116–73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony C. Hackney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hackney, A.C., Smith-Ryan, A.E., Fink, J.E. (2020). Methodological Considerations in Exercise Endocrinology. In: Hackney, A., Constantini, N. (eds) Endocrinology of Physical Activity and Sport. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-030-33376-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33376-8_1

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-33375-1

  • Online ISBN: 978-3-030-33376-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics