Skip to main content

Numerical Simulation for Drop Impact on Textured Surfaces

  • Conference paper
  • First Online:
Droplet Interactions and Spray Processes

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 121))

  • 1046 Accesses

Abstract

Superhydrophobic surfaces with small-scale features have recently gained interest, because impacting droplets may bounce-off faster with respect to a flat superhydrophobic surface. For such surfaces the correct numerical prediction of the impact phenomena is very difficult. Our goal is the numerical study of drop impact on such surfaces using Free Surface 3D (FS3D), our in-house code for the simulation of incompressible multi-phase flows. Until recently, FS3D was not able to represent the interaction of a droplet with a complex textured solid surface. In this work, we show how we added this feature to the code by implementing the representation of embedded arbitrary-shaped boundaries using a Cartesian grid. Two approaches were developed; a preliminary simplified approach and an ultimate, more rigorous one. We discuss both implementations and we show a comparison of the two approaches for a test case. The results show that the predictions for impact dynamics of the two approaches slightly differ. Although, the simplified approach shows only small errors in mass conservation, it is fundamentally not conservative. With the introduction of a new approach we were able to improve the conservativeness of our simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bird, J.C., Dhiman, R., Kwon, H., Varanasi, K.K.: Reducing the contact time of a bouncing drop. Nature 503, 385–388 (2013)

    Google Scholar 

  2. Gauthier, A., Symon, S., Clanet, C., Quéré, D.: Water impacting on superhydrophobic macrotextures. Nat. Commun. 6, 8001 (2015)

    Google Scholar 

  3. Regulagadda, K., Bakshi, S., Das, S.K.: Morphology of drop impact on a superhydrophobic surface with macro-structures. Phys. Fluids 29, 082104 (2017)

    Google Scholar 

  4. Chantelot, P., Moqaddam, A.M., Gauthier, A., Chikatamaria, S.S., Clanet, C., Karlin, I.V., Quéré, D.: Water ring-bouncing on repellent singularities. Soft. Matter 14(12), 2227–2233 (2018)

    Article  Google Scholar 

  5. Shen, Y., Liu, S., Zhu, C., Tao, J., Chen, Z., Tao, H., Pan, L., Wang, G., Wang, T.: Bouncing dynamics of impact droplets on the convex superhydrophobic surfaces. Appl. Phys. Lett. 110, 221601 (2017)

    Google Scholar 

  6. Khojasteh, D., Bordbar, A., Kamali, R., Marengo, M.: Curvature effect on droplet impacting onto hydrophobic and superhydrophobic spheres. Int. J. Comput. Fluid Dyn. 31(6–8), 310–323 (2017)

    Article  MathSciNet  Google Scholar 

  7. Liu, Y., Andrew, M., Li, J., Yeomans, J.M., Wang, Z.: Symmetry breaking in drop bouncing on curved surfaces. Nat. Commun. 6, 10034 (2015)

    Google Scholar 

  8. Liu, X., Zhao, Y., Chen, S., Shen, S., Zhao, X.: Numerical research on the dynamic characteristics of a droplet impacting a hydrophobic tube. Phys. Fluids 29, 062105 (2017)

    Google Scholar 

  9. Schlottke, J., Dulger, E., Weigand, B.: A VOF-based 3D numerical investigation of evaporating, deformed droplets. Prog. Comput. Fluid Dyn. Int. J. 9, 426–435 (2009)

    Article  Google Scholar 

  10. Schlottke, J., Straub, W., Beheng, K.D., Gomaa, H., Weigand, B.: Numerical investigation of collision-induced breakup of raindrops. Part I: methodology 12 references and dependencies on collision energy and eccentricity. J. Atmos. Sci. 67, 557–575 (2010)

    Google Scholar 

  11. Ertl, M., Weigand, B.: Analysis methods for direct numerical simulations of primary breakup of shear-thinning liquid jets. Atomization Sprays 27(4), 303–317 (2017)

    Article  Google Scholar 

  12. Reitzle, M., Kieffer-Roth, C., Garcke, H., Weigand, B.: A volume-of-fluid method for three-dimensional hexagonal solidification processes. J. Comput. Phys. 339, 356–369 (2017)

    Article  MathSciNet  Google Scholar 

  13. Reitzle, M., Ruberto, S., Stierle, R., Gross, J., Tanzen, T., Weigand, B.: Direct numerical simulation of sublimating ice particles. Int. J. Thermal Sci. 145, 105953 (2019)

    Google Scholar 

  14. Rauschenberger, P., Weigand, B.: Direct numerical simulation of rigid bodies in multiphase flow within an Eulerian framework. J. Comput. Phys. 291, 238–253 (2015)

    Article  MathSciNet  Google Scholar 

  15. Popinet, S.: Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190(2), 572–600 (2003)

    Article  MathSciNet  Google Scholar 

  16. Eisenschmidt, K., Ertl, M., Gomaa, H., Kieffer-Roth, C., Meister, C., Rauschenberger, P., Reitzle, M., Schlottke, K., Weigand, B.: Direct numerical simulations for multiphase flows: an overview of the multiphase code FS3D. Appl. Math. Comput. 272, 508–517 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Lafaurie, B., Nardone, C., Scardovelli, R., Zaleski, S., Zanetti, G.: Modelling merging and fragmentation in multiphase flows with SURFER. J. Comput. Phys. 113(1), 134–147 (1994)

    Google Scholar 

  18. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)

    Article  Google Scholar 

  19. Rider, W.J., Kothe, D.B.: Reconstructing volume tracking. J. Comput. Phys. 141(2), 112–152 (1998)

    Article  MathSciNet  Google Scholar 

  20. Rieber, M.: Numerische Modellierung der Dynamik freier Grenzflächen in Zweiphasenströmungen, dissertation, University of Stuttgart (2004)

    Google Scholar 

  21. Wesseling, P.: An Introduction to Multigrid Methods. Wiley (1992)

    Google Scholar 

  22. Pathak, A., Raessi, M.: A three-dimensional volume-of-fluid method for reconstructing and advecting three-material interfaces forming contact lines. J. Comput. Phys. 307, 550–573 (2016)

    Article  MathSciNet  Google Scholar 

  23. Johansen, H., Colella, P.: A Cartesian grid embedded boundary method for Poisson’s equation on irregular domains. J. Comput. Phys. 147(1), 60–85 (1998)

    Article  MathSciNet  Google Scholar 

  24. Regulagadda, K., Bakshi, S., Das, S.K.: Triggering of flow asymmetry by anisotropic deflection of lamella during the impact of a drop onto superhydrophobic surfaces. Phys. Fluids 30, 072105 (2018)

    Google Scholar 

  25. Richard, D., Clanet, C., Quéré, D.: Contact time of a bouncing drop. Nature 417, 811 (2002)

    Google Scholar 

Download references

Acknowledgements

We thank the German Science Foundation (DFG) for the financial support of this research within the international research training group Droplet Interaction Technologies, DROPIT, GRK 2016/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Baggio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baggio, M., Weigand, B. (2020). Numerical Simulation for Drop Impact on Textured Surfaces. In: Lamanna, G., Tonini, S., Cossali, G., Weigand, B. (eds) Droplet Interactions and Spray Processes. Fluid Mechanics and Its Applications, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-030-33338-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33338-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33337-9

  • Online ISBN: 978-3-030-33338-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics