Skip to main content

An Analytical Approach to Model the Effect of Evaporation on Oscillation Amplitude of Liquid Drops in Gaseous Environment

  • Conference paper
  • First Online:
Droplet Interactions and Spray Processes

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 121))

  • 1010 Accesses

Abstract

The combined effect of evaporation and oscillation of liquid drops in gaseous stagnant environment is analytically modelled. Mechanical energy and mass balances are used to derive the time evolution of drop size and amplitude of oscillation. Two approaches, based on different assumptions about the kinetic energy distribution inside the drop, are used to evaluate the energy loss due to evaporation. Conditions for oscillation damping by evaporation are derived. Application of the model to the case of water, acetone and n-dodecane drops evaporating in hot air shows a non neglectful decrease of drop lifetime, with respect to non-oscillating drops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sazhin, S.S.: Droplets and Sprays. Springer, London (2014)

    Book  Google Scholar 

  2. Sazhin, S.S.: Modelling fuel droplet heating and evaporation: recent results and unsolved problems. Fuel 196, 69–101 (2017)

    Article  Google Scholar 

  3. Fuchs, N.A.: Vaporisation and droplet growth in gaseous media. Pergamon Press, London (1959)

    Google Scholar 

  4. Abramzon, B., Sirignano, W.A.: Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transfer 32(9), 1605–1618 (1989)

    Article  Google Scholar 

  5. Aggarwal, S.K., Mongia, H.C.: Multicomponent and high-pressure effects on droplet vaporization. J. Eng. Gas Turbines Power 24, 248–255 (2002)

    Article  Google Scholar 

  6. Tonini, S., Cossali, G.E.: A novel vaporisation model for a single-component drop in high temperature air streams. Int. J. Therm. Sci. 75, 194–203 (2014)

    Article  Google Scholar 

  7. Sobac, B., Talbot, P., Haut, B., Rednikov, A., Colinet, P.: A comprehensive analysis of the evaporation of a liquid spherical drop. J. Colloid Interface Sci. 438, 306–317 (2015)

    Article  Google Scholar 

  8. Cossali, G.E., Tonini, S.: An analytical model of heat and mass transfer from liquid drops with temperature dependence of gas thermo-physical properties. Int. J. Heat Mass Transfer 138, 1166–1177 (2019)

    Article  Google Scholar 

  9. Tong, A.Y., Sirignano, W.A.: Multicomponent transient droplet vaporization with internal circulation: integral equation formulation. Numerical Heat Transfer 10, 253–278 (1986)

    Article  Google Scholar 

  10. Zeng, Y., Lee, Y.C.F.: Multicomponent-fuel film-vaporization model for multidimensional computations. J. Propulsion Power 16, 964–973 (2000)

    Article  Google Scholar 

  11. Al Qubeissi, M., Sazhin, S.S., Crua, C., Turner, J., Heikal, M.R.: Modelling of biodiesel fuel droplet heating and evaporation: effects of fuel composition. Fuel 154, 308–318 (2015)

    Article  Google Scholar 

  12. Li, J., Zhang, J.: A theoretical study of the spheroidal droplet evaporation in forced convection. Phys. Lett. A 378(47), 3537–3543 (2014)

    Article  Google Scholar 

  13. Tonini, S., Cossali, G.E.: One-dimensional analytical approach to modelling evaporation and heating of deformed drops. Int. J. Heat Mass Transfer 97, 301–307 (2016)

    Article  Google Scholar 

  14. Zubkov, V.S., Cossali, G.E., Tonini, S., Rybdylova, O., Crua, C., Heikal, M., Sazhin, S.S.: Mathematical modelling of heating and evaporation of a spheroidal droplet. Int. J. Heat Mass Transfer 108, 2181–2190 (2017)

    Article  Google Scholar 

  15. Sirignano, W.A.: Fluid Dynamics and Transport of Droplets and Sprays. 2nd edn, Cambridge University Press (2010)

    Google Scholar 

  16. Gusev, I.G., Krutitskii, P.A., Sazhin, S.S., Elwardany, A.E.: New solutions to the species diffusion equation inside droplets in the presence of the moving boundary. Int. J. Heat Mass Transfer 55(7), 2014–2021 (2012)

    Article  Google Scholar 

  17. Sazhin, S.S., Krutitskii, P.A., Gusev, I.G., Heikal, M.R.: Transient heating of an evaporating droplet. Int. J. Heat Mass Transfer 53(13), 2826–2836 (2010)

    Article  Google Scholar 

  18. Sazhin, S.S., Krutitskii, P.A., Gusev, I.G., Heikal, M.R.: Transient heating of an evaporating droplet with presumed time evolution of its radius. Int. J. Heat Mass Transfer 54(5), 1278–1288 (2011)

    Article  Google Scholar 

  19. Tonini, S., Cossali, G.E.: Modelling liquid drop heating and evaporation: the effect of drop shrinking. Comp. Therm. Sci 10(3), 273–283 (2018)

    Article  Google Scholar 

  20. Rayleigh, L.: On the capillary phenomena of jets. Proc. R. Soc. Lond. A 29, 71–97 (1879)

    Article  Google Scholar 

  21. Lamb, H.: On the oscillations of a viscous spheroid. Proc. Lond. Math. Soc. 13, 51–66 (1881)

    Article  MathSciNet  Google Scholar 

  22. Lamb, H.: Hydrodynamics, 6th edn. Cambridge University Press, United Kingdom (1932)

    MATH  Google Scholar 

  23. Chandrasekhar, S.: The oscillations of a viscous liquid globe. Proc. London Math. Soc. 9, 141–149 (1959)

    Article  MathSciNet  Google Scholar 

  24. Miller, C., Scriven, L.: The oscillations of a fluid droplet immersed in another fluid. J. Fluid Mech. 32, 417–435 (1968)

    Article  Google Scholar 

  25. Prosperetti, A.: Free oscillations of drops and bubbles: the initial-value problem. J. Fluid Mech. 100(2), 333–347 (1980)

    Article  Google Scholar 

  26. Tsamopoulos, J.A., Brown, R.A.: Nonlinear oscillations of inviscid drops and bubbles. J. Fluid Mech. 127, 519–537 (1983)

    Article  Google Scholar 

  27. Trinh, E.H., Zwern, A., Wang, T.G.: An experimental study of small-amplitude drop oscillations in immiscible liquid systems. J. Fluid Mech. 115, 453–474 (1982)

    Article  Google Scholar 

  28. Trinh, E.H., Wang, T.G.: Large-amplitude free and driven drop-shape oscillations: experimental observations. J. Fluid Mech. 122, 315–338 (1982)

    Article  Google Scholar 

  29. Becker, E., Hiller, W., Kowalewski, T.: Experimental and theoretical investigation of large-amplitude oscillations of liquid droplets. J. Fluid Mech. 231, 189–210 (1981)

    Article  Google Scholar 

  30. Becker, E., Hiller, W., Kowalewski, T.: Nonlinear dynamics of viscous droplets. J. Fluid Mech. 258, 191–216 (1994)

    Article  MathSciNet  Google Scholar 

  31. Brenn, G., Teichtmeister, S.J.: Linear shape oscillations and polymeric time scales of viscoelastic drops. J. Fluid Mech. 733, 504–527 (2013)

    Article  MathSciNet  Google Scholar 

  32. Trinh, E.H., Thiessen, D.B., Holt, R.G.: Driven and freely decaying nonlinear shape oscillations of drops and bubbles immersed in a liquid: experimental results. J. Fluid Mech. 364, 253–272 (1998)

    Article  Google Scholar 

  33. Wang, T.G., Anilkumar, A.V., Lee, C.P.: Oscillations of liquid drops: results from USML-1 experiments in Space. J. Fluid Mech. 308, 1–14 (1996)

    Article  Google Scholar 

  34. Azuma, H., Yoshihara, S.: Three-dimensional large-amplitude drop oscillations: experiments and theoretical analysis. J. Fluid Mech. 393, 309–332 (1999)

    Article  Google Scholar 

  35. Al Zaitone, B.: Oblate spheroidal drop evaporation in an acoustic levitator. Int. J. Heat Mass Transfer 126, 164–172 (2018)

    Article  Google Scholar 

  36. Mashayek, F.: Dynamics of evaporating drops, Part I: formulation and evaporation model. Int. J. Heat Mass Transf. 44(8), 1517–1526 (2001)

    Article  Google Scholar 

  37. Mashayek, F.: Dynamics of evaporating drops, Part II: free oscillations. Int. J. Heat Mass Transf. 44(8), 1527–1541 (2001)

    Article  Google Scholar 

  38. Tonini, S., Cossali, G.E.: An evaporation model for oscillating spheroidal drops. Int. Comm. Heat Mass Transf. 51, 18–24 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautham Varma Raja Kochanattu .

Editor information

Editors and Affiliations

Appendix

Appendix

The surface of a spheroid can be calculated as \( A = 4\uppi\,R_{d}^{2} \beta \), where [13]

$$ \beta = \frac{A}{{4\pi R_{d}^{2} }} = \frac{1}{{2\varepsilon^{2/3} }}\left\{ {\begin{array}{*{20}l} {1 + \frac{{\varepsilon^{2} }}{{\sqrt {1 - \varepsilon^{2} } }}\frac{1}{2}\log \left( {\frac{{1 + \sqrt {1 - \varepsilon^{2} } }}{{1 - \sqrt {1 - \varepsilon^{2} } }}} \right)} \hfill & {{\text{oblate (}}\varepsilon { < 1)}} \hfill \\ {1 + \frac{{\varepsilon^{2} }}{{\sqrt {\varepsilon^{2} - 1} }}\arctan \left( {\sqrt {\varepsilon^{2} - 1} } \right)} \hfill & {{\text{prolate (}}\varepsilon { > 1)}} \hfill \\ \end{array} } \right.. $$
(A1)

When evaluating the time-integrals over a cycle, it is convenient to observe first that, given any function of β(t), the integral can be broken into the sum of two integrals, over the two half-periods where the drop is in a prolate and oblate shape, respectively. Each of these integrals can in turn be split into the integral from the spherical shape (β = 1) to the maximum deformation (β = βmax) and back. Changing the variable of integration from t to β, the integrals over time can be transformed into integral over β, from 1 to βmax, for the two cases (oblate and prolate):

$$ \int\limits_{0}^{{t_{0} }} {f\left( \beta \right)dt } = 2\int\limits_{\begin{subarray}{l} \quad 1 \\ prolate \end{subarray} }^{{\beta _{{\max }} }} {\frac{{f\left( \beta \right)}}{{\left| {\dot{\beta }} \right|}}d\beta } + 2\int\limits_{\begin{subarray}{l} \quad 1 \\ oblate \end{subarray} }^{{\beta _{{\max }} }} {\frac{{f\left( \beta \right)}}{{\left| {\dot{\beta }} \right|}}d\beta } $$
(A2)

with \( \dot{\beta } = \frac{d\beta }{dt} \). If the integral contains explicitly ε, equation (A1) can be used to substitute ε by ε(β) and, if \( \dot{\varepsilon } \) appears explicitly, then the variable transformation

$$ \dot{\varepsilon } = \frac{d\varepsilon }{dt} = \frac{d\varepsilon }{d\beta }\frac{d\beta }{dt} = \frac{{\dot{\beta }}}{{\beta^{{\prime }} }} $$
(A3)

where \( \beta^{{\prime }} = \frac{d\beta }{d\varepsilon } \), allows to eliminate it in favour of β and β′. From Eqs. (A1) and (10), the derivatives \( \dot{\beta } \) and β′ can be written as function of β:

$$ \dot{\beta } = \frac{d\beta }{dt} = \omega_{2} f\left( {\beta ,\beta_{{\max} } } \right);\quad \begin{array}{*{20}l} {\beta ' = \pm \frac{{3 + \varepsilon^{2/3} \beta \left( {\varepsilon^{2} - 4} \right)}}{{3\varepsilon^{5/3} \left( {1 - \varepsilon^{2} } \right)}}} \hfill \\ { - {\text{oblate, + prolate}}} \hfill \\ \end{array} . $$
(A4)

To calculate the integral \( \bar{\varGamma } = \frac{1}{{t_{0} }}\int\limits_{0}^{{t_{0} }} {{\varGamma }(t)dt} \) , first apply the transformation (A2) and then from Eqs. (A4) and (4) one obtains:

$$ \bar{\varGamma } = \frac{1}{\pi }\left[ {\int\limits_{\begin{subarray}{l} \quad 1 \\ prolate \end{subarray} }^{{\beta_{{\max} } }} {\frac{{{\varGamma }\left( \beta \right)}}{{\left| {f\left( {\beta ,\beta_{{\max} } } \right)} \right|}}d\beta } + \int\limits_{\begin{subarray}{l} \quad 1 \\ oblate \end{subarray} }^{{\beta_{{\max} } }} {\frac{{\Gamma \left( \beta \right)}}{{\left| {f\left( {\beta ,\beta_{{\max} } } \right)} \right|}}d\beta } } \right] $$
(A5)

where the symbol Γ(β) is used for \( \Gamma \left[ {\varepsilon \left( \beta \right)} \right] \), showing that \( \bar{\varGamma} \) is only a function of βmax and it is independent of the oscillation frequency. To calculate the integral \( \bar{e}_{K} = \frac{1}{{t_{0} }}\int\limits_{0}^{{t_{0} }} {e_{K} (t)dt} \), where eK(t) is given by Eq. (16), the integrand can be transformed, using Eq. (A3), (A4) and (A1), to a function of β; then, applying again transformation (A2) and using Eq. (4):

$$ \bar{e}_{K} = \frac{{R_{d}^{2} \omega_{2}^{2} }}{36\pi }\left[ {\int\limits_{\begin{subarray}{l} \quad 1 \\ prolate \end{subarray} }^{{\beta_{{\max} } }} {\frac{I\left( \beta \right)}{{\beta \varepsilon^{10/3} \left( \beta \right)}}\frac{{f\left( {\beta ,\beta_{{\max} } } \right)}}{{\beta^{{{\prime }2}} }}d\beta } + \int\limits_{\begin{subarray}{l} \quad 1 \\ oblate \end{subarray} }^{{\beta_{{\max} } }} {\frac{I\left( \beta \right)}{{\beta \varepsilon^{10/3} \left( \beta \right)}}\frac{{f\left( {\beta ,\beta_{{\max} } } \right)}}{{\beta^{{{\prime }2}} }}d\beta } } \right] $$
(A6)

where I(ε) was transformed in a function of β using again equation (A1). Again the term in square brackets is a function of βmax only and

$$ \bar{e}_{K} = R_{d}^{2} \omega_{2}^{2} F_{s} \left( {\beta_{{\max} } } \right). $$
(A7)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Varma Raja Kochanattu, G., Cossali, G.E., Tonini, S. (2020). An Analytical Approach to Model the Effect of Evaporation on Oscillation Amplitude of Liquid Drops in Gaseous Environment. In: Lamanna, G., Tonini, S., Cossali, G., Weigand, B. (eds) Droplet Interactions and Spray Processes. Fluid Mechanics and Its Applications, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-030-33338-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33338-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33337-9

  • Online ISBN: 978-3-030-33338-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics