Skip to main content

Abstract

Coronary stents are the preferred option for treating diseased coronary arteries. When implanted, the stent is deployed at the lesion to restore the lumen area by scaffolding the vessel open. However, stents still have a relatively high failure rate of 2–8%, with many patients requiring further interventions due to restenosis and stent thrombosis. It is known that blood flow disruption caused by the presence of a stent can trigger signalling pathways that accelerate restenosis or trigger thrombus formation. This work aims to find design variable values that minimize these adverse flow conditions using Multi-Objective optimisation.

This project was undertaken with the assistance of resources and services from the National Computational Infrastructure (NCI), which is supported by the Australian Government.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moses, J.W., et al.: Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. New Engl. J. Med. 349(14), 1315–1323 (2003). 05261

    Article  Google Scholar 

  2. Alfonso, F., et al.: A prospective randomized trial of drug-eluting balloons versus everolimus-eluting stents in patients with in-stent restenosis of drug-eluting stents: the RIBS IV randomized clinical trial. J. Am. Coll. Cardiol. 66(1), 23–33 (2015). 00157

    Article  Google Scholar 

  3. Malek, A.M.: Hemodynamic shear stress and its role in atherosclerosis. JAMA 282(21), 2035 (1999). https://doi.org/10.1001/jama.282.21.2035

    Article  Google Scholar 

  4. Deb, K.: Multi-objective optimisation using evolutionary algorithms: an introduction. In: Wang, L., Ng, A., Deb, K. (eds.) Multi-objective Evolutionary Optimisation for Product Design and Manufacturing, pp. 3–34. Springer, London (2011). https://doi.org/10.1007/978-0-85729-652-8_1. 00294

    Chapter  Google Scholar 

  5. Kraiss, L.W., Geary, R.L., Mattsson, E.J., Vergel, S., Au, Y.T., Clowes, A.W.: Acute reductions in blood flow and shear stress induce platelet-derived growth factor-A expression in baboon prosthetic grafts. Circul. Res. 79(1), 45–53 (1996)

    Article  Google Scholar 

  6. Morbiducci, U., Kok, A.M., Kwak, B.R., Stone, P.H., Steinman, D.A., Wentzel, J.J.: Atherosclerosis at arterial bifurcations: evidence for the role of haemodynamics and geometry. J. Thromb. Haemost. 115(3), 484–92 (2016). https://doi.org/10.1160/TH15-07-0597. 00051

    Article  Google Scholar 

  7. Wentzel, J.J., et al.: Relationship between neointimal thickness and shear stress after wallstent implantation in human coronary arteries. Circulation 103(13), 1740–1745 (2001). https://doi.org/10.1161/01.CIR.103.13.1740

    Article  Google Scholar 

  8. Dolan, J.M., Kolega, J., Meng, H.: High wall shear stress and spatial gradients in vascular pathology: a review. Ann. Biomed. Eng. 41(7), 1411–27 (2013). https://doi.org/10.1007/s10439-012-0695-0

    Article  Google Scholar 

  9. Putra, N.K., Palar, P.S., Anzai, H., Shimoyama, K., Ohta, M.: Multiobjective design optimization of stent geometry with wall deformation for triangular and rectangular struts. Med. Biol. Eng. Comput. 57(1), 15–26 (2019). 00001

    Article  Google Scholar 

  10. Tammareddi, S., Sun, G., Li, Q.: Multiobjective robust optimization of coronary stents. Mater. Design 90, 682–692 (2016). 00025

    Article  Google Scholar 

  11. Gundert, T.J., Marsden, A.L., Yang, W., LaDisa, J.F.: Optimization of cardiovascular stent design using computational fluid dynamics. J. Biomech. Eng. 134(1), 011002 (2012). https://doi.org/10.1115/1.4005542. 00070

    Article  Google Scholar 

  12. Johnston, B.M., Johnston, P.R., Corney, S., Kilpatrick, D.: Non-newtonian blood flow in human right coronary arteries: transient simulations. J. Biomech. 39(6), 1116–1128 (2006). https://doi.org/10.1016/j.jbiomech.2005.01.034

    Article  Google Scholar 

  13. Balossino, R., Gervaso, F., Migliavacca, F., Dubini, G.: Effects of different stent designs on local hemodynamics in stented arteries. J. Biomech. 41(5), 1053–1061 (2008). https://doi.org/10.1016/j.jbiomech.2007.12.005. 00165

    Article  Google Scholar 

  14. Pant, S., Limbert, G., Curzen, N.P., Bressloff, N.W.: Multiobjective design optimisation of coronary stents. Biomaterials 32(31), 7755–7773 (2011). https://doi.org/10.1016/j.biomaterials.2011.07.059. 00082

    Article  Google Scholar 

  15. Beier, S., et al.: Hemodynamics in idealized stented coronary arteries: important stent design considerations. Ann. Biomed. Eng. 44(2), 315–329 (2016). https://doi.org/10.1007/s10439-015-1387-3. 00026

    Article  Google Scholar 

  16. Stein, M.: Large sample properties of simulations using Latin hypercube sampling. Technometrics 29(2), 143–151 (1987). 01410

    Article  MathSciNet  Google Scholar 

  17. Tang, T.D., Giddens, D.P., Zarins, C.K., Glagov, S.: Velocity profile and wall shear measurements in a model human coronary artery. In: ASME Winter Annual Meeting Proceedings, Atlanta. ASME, New York (1991). 00010

    Google Scholar 

  18. Myers, J.G., Moore, J.A., Ojha, M., Johnston, K.W., Ethier, C.R.: Factors influencing blood flow patterns in the human right coronary artery. Ann. Biomed. Eng. 29(2), 109–120 (2001). https://doi.org/10.1114/1.1349703. 00327

    Article  Google Scholar 

  19. O’Rourke, M.F., Nichols, W.W.: McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles. Hodder Arnold, London (2005). 04949

    Google Scholar 

  20. Razavi, A., Shirani, E., Sadeghi, M.: Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. J. Biomech. 44(11), 2021–2030 (2011). https://doi.org/10.1016/j.jbiomech.2011.04.023

    Article  Google Scholar 

  21. Amirjani, A., Yousefi, M., Cheshmaroo, M.: Parametrical optimization of stent design; a numerical-based approach. Comput. Mater. Science 90, 210–220 (2014). https://doi.org/10.1016/j.commatsci.2014.04.002. 00012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susann Beier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gharleghi, R., Wright, H., Khullar, S., Liu, J., Ray, T., Beier, S. (2019). Advanced Multi-objective Design Analysis to Identify Ideal Stent Design. In: Liao, H., et al. Machine Learning and Medical Engineering for Cardiovascular Health and Intravascular Imaging and Computer Assisted Stenting. MLMECH CVII-STENT 2019 2019. Lecture Notes in Computer Science(), vol 11794. Springer, Cham. https://doi.org/10.1007/978-3-030-33327-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33327-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33326-3

  • Online ISBN: 978-3-030-33327-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics