Skip to main content

Structure and Function of HD-GYP Phosphodiesterases

  • Chapter
  • First Online:

Abstract

HD-GYPs represent the least abundant, and somewhat mysterious, class of dedicated cyclic di-GMP phosphodiesterases (PDE). They are metal dependent enzymes, belonging to the HD phosphohydrolase superfamily, and are evolutionarily unrelated to the EAL class of cyclic di-GMP dedicated PDEs. In contrast to the EAL domain that hydrolyses cyclic di-GMP to pGpG, HD-GYPs are able to further hydrolyse pGpG to GMP. As both the GGDEF and EAL domains, the HD-GYP module is often found fused with other regulatory domains. Despite the ability to act as a PDE, the physiological role(s) of HD-GYP proteins within the cyclic di-GMP-dependent biofilm regulation are still not fully clarified. Indeed, many HD-GYPs may also mediate protein−protein interactions within more complex regulatory pathways or function as cyclic di-GMP or pGpG receptors. The few structures available indicate that HD-GYPs can be clustered into two distinct groups depending on the metal binding site, which can accommodate two or three metal ions. The nature and the number of bound metals determine whether a certain HD-GYP will be active as a PDE or will function as a dinucleotide binding domain. In this chapter, we will review the biochemical and structural data available to date on HD-GYPs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Romling U, Gomelsky M, Galperin MY (2005) C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol 57(3):629–639. https://doi.org/10.1111/j.1365-2958.2005.04697.x

    Article  CAS  PubMed  Google Scholar 

  2. Galperin MY, Natale DA, Aravind L, Koonin EV (1999) A specialized version of the HD hydrolase domain implicated in signal transduction. J Mol Microbiol Biotechnol 1(2):303–305

    CAS  PubMed  Google Scholar 

  3. Romling U, Liang ZX, Dow JM (2017) Progress in understanding the molecular basis underlying functional diversification of cyclic dinucleotide turnover proteins. J Bacteriol 199(5):e00790-16. https://doi.org/10.1128/jb.00790-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liao H, Liu M, Guo X (2018) The special existences: nanoRNA and nanoRNase. Microbiol Res 207:134–139. https://doi.org/10.1016/j.micres.2017.11.014

    Article  CAS  PubMed  Google Scholar 

  5. Orr MW, Weiss CA, Severin GB, Turdiev H, Kim SK, Turdiev A, Liu K, Tu BP, Waters CM, Winkler WC, Lee VT (2018) A subset of exoribonucleases serve as degradative enzymes for pGpG in c-di-GMP signaling. J Bacteriol 200(24):e00300-318. https://doi.org/10.1128/jb.00300-18

    Article  CAS  Google Scholar 

  6. Goldman SR, Sharp JS, Vvedenskaya IO, Livny J, Dove SL, Nickels BE (2011) NanoRNAs prime transcription initiation in vivo. Mol Cell 42(6):817–825. https://doi.org/10.1016/j.molcel.2011.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cohen D, Mechold U, Nevenzal H, Yarmiyhu Y, Randall TE, Bay DC, Rich JD, Parsek MR, Kaever V, Harrison JJ, Banin E (2015) Oligoribonuclease is a central feature of cyclic diguanylate signaling in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 112(36):11359–11364. https://doi.org/10.1073/pnas.1421450112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Orr MW, Donaldson GP, Severin GB, Wang J, Sintim HO, Waters CM, Lee VT (2015) Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover. Proc Natl Acad Sci USA 112(36):E5048–E5057. https://doi.org/10.1073/pnas.1507245112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Galperin MY, Nikolskaya AN, Koonin EV (2001) Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203(1):11–21

    Article  CAS  PubMed  Google Scholar 

  10. Sigrist CJ, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, Bougueleret L, Xenarios I (2013) New and continuing developments at PROSITE. Nucleic Acids Res 41(Database issue):D344–D347. https://doi.org/10.1093/nar/gks1067

    Article  CAS  PubMed  Google Scholar 

  11. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE, Finn RD (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47(D1):D427–D432. https://doi.org/10.1093/nar/gky995

    Article  CAS  PubMed  Google Scholar 

  12. Yakunin AF, Proudfoot M, Kuznetsova E, Savchenko A, Brown G, Arrowsmith CH, Edwards AM (2004) The HD domain of the Escherichia coli tRNA nucleotidyltransferase has 2′,3′-cyclic phosphodiesterase, 2′-nucleotidase, and phosphatase activities. J Biol Chem 279(35):36819–36827. https://doi.org/10.1074/jbc.M405120200

    Article  CAS  PubMed  Google Scholar 

  13. Galperin MY (2005) A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol 5:35. https://doi.org/10.1186/1471-2180-5-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dow JM, Fouhy Y, Lucey JF, Ryan RP (2006) The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants. Mol Plant-Microbe Interact 19(12):1378–1384. https://doi.org/10.1094/MPMI-19-1378

    Article  CAS  PubMed  Google Scholar 

  15. Dow JM, Crossman L, Findlay K, He YQ, Feng JX, Tang JL (2003) Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc Natl Acad Sci USA 100(19):10995–11000. https://doi.org/10.1073/pnas.1833360100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Slater H, Alvarez-Morales A, Barber CE, Daniels MJ, Dow JM (2000) A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris. Mol Microbiol 38(5):986–1003

    Article  CAS  PubMed  Google Scholar 

  17. Ryan RP, Fouhy Y, Lucey JF, Jiang BL, He YQ, Feng JX, Tang JL, Dow JM (2007) Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris. Mol Microbiol 63(2):429–442. https://doi.org/10.1111/j.1365-2958.2006.05531.x

    Article  CAS  PubMed  Google Scholar 

  18. Ryan RP, Fouhy Y, Lucey JF, Jiang B-L, He Y-Q, Feng J-X, Tang J-L, Maxwell Dow J (2017) Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris. Mol Microbiol 104(4):690–692. https://doi.org/10.1111/mmi.13683

    Article  CAS  Google Scholar 

  19. He YW, Ng AY, Xu M, Lin K, Wang LH, Dong YH, Zhang LH (2007) Xanthomonas campestris cell-cell communication involves a putative nucleotide receptor protein Clp and a hierarchical signalling network. Mol Microbiol 64(2):281–292. https://doi.org/10.1111/j.1365-2958.2007.05670.x

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Wei C, Jiang W, Wang L, Li C, Wang Y, Dow JM, Sun W (2013) The HD-GYP domain protein RpfG of Xanthomonas oryzae pv. oryzicola regulates synthesis of extracellular polysaccharides that contribute to biofilm formation and virulence on rice. PLoS One 8(3):e59428. https://doi.org/10.1371/journal.pone.0059428

    Article  PubMed  PubMed Central  Google Scholar 

  21. Andrade MO, Alegria MC, Guzzo CR, Docena C, Rosa MC, Ramos CH, Farah CS (2006) The HD-GYP domain of RpfG mediates a direct linkage between the Rpf quorum-sensing pathway and a subset of diguanylate cyclase proteins in the phytopathogen Xanthomonas axonopodis pv citri. Mol Microbiol 62(2):537–551. https://doi.org/10.1111/j.1365-2958.2006.05386.x

    Article  CAS  PubMed  Google Scholar 

  22. Ryan RP, McCarthy Y, Andrade M, Farah CS, Armitage JP, Dow JM (2010) Cell-cell signal-dependent dynamic interactions between HD-GYP and GGDEF domain proteins mediate virulence in Xanthomonas campestris. Proc Natl Acad Sci USA 107(13):5989–5994. Erratum in: Proc Natl Acad Sci USA 2017;5114:E1303. https://doi.org/10.1073/pnas.0912839107

    Article  CAS  Google Scholar 

  23. Sarenko O, Klauck G, Wilke FM, Pfiffer V, Richter AM, Herbst S, Kaever V, Hengge R (2017) More than enzymes that make or break cyclic di-GMP-local signaling in the interactome of GGDEF/EAL domain proteins of Escherichia coli. MBio 8(5):e01639-17. https://doi.org/10.1128/mBio.01639-17

    Article  PubMed  PubMed Central  Google Scholar 

  24. Conner JG, Zamorano-Sanchez D, Park JH, Sondermann H, Yildiz FH (2017) The ins and outs of cyclic di-GMP signaling in Vibrio cholerae. Curr Opin Microbiol 36:20–29. https://doi.org/10.1016/j.mib.2017.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McKee RW, Kariisa A, Mudrak B, Whitaker C, Tamayo R (2014) A systematic analysis of the in vitro and in vivo functions of the HD-GYP domain proteins of Vibrio cholerae. BMC Microbiol 14:272. https://doi.org/10.1186/s12866-014-0272-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hammer BK, Bassler BL (2009) Distinct sensory pathways in Vibrio cholerae El Tor and classical biotypes modulate cyclic dimeric GMP levels to control biofilm formation. J Bacteriol 191(1):169–177. https://doi.org/10.1128/jb.01307-08

    Article  CAS  PubMed  Google Scholar 

  27. Koestler BJ, Waters CM (2014) Intestinal GPS: bile and bicarbonate control cyclic di-GMP to provide Vibrio cholerae spatial cues within the small intestine. Gut Microbes 5(6):775–780. https://doi.org/10.4161/19490976.2014.985989

    Article  PubMed  Google Scholar 

  28. Gao J, Tao J, Liang W, Zhao M, Du X, Cui S, Duan H, Kan B, Su X, Jiang Z (2015) Identification and characterization of phosphodiesterases that specifically degrade 3′3′-cyclic GMP-AMP. Cell Res 25(5):539–550. https://doi.org/10.1038/cr.2015.40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rajeev L, Luning EG, Altenburg S, Zane GM, Baidoo EE, Catena M, Keasling JD, Wall JD, Fields MW, Mukhopadhyay A (2014) Identification of a cyclic-di-GMP-modulating response regulator that impacts biofilm formation in a model sulfate reducing bacterium. Front Microbiol 5:382. https://doi.org/10.3389/fmicb.2014.00382

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sultan SZ, Pitzer JE, Boquoi T, Hobbs G, Miller MR, Motaleb MA (2011) Analysis of the HD-GYP domain cyclic dimeric GMP phosphodiesterase reveals a role in motility and the enzootic life cycle of Borrelia burgdorferi. Infect Immun 79:3273–3283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ryan RP, Lucey J, O’Donovan K, McCarthy Y, Yang L, Tolker-Nielsen T, Dow JM (2009) HD-GYP domain proteins regulate biofilm formation and virulence in Pseudomonas aeruginosa. Environ Microbiol 11(5):1126–1136. Erratum in Corrigendum. Environ Microbiol 2016;1111:1736. https://doi.org/10.1111/j.1462-2920.2008.01842.x

    Article  CAS  PubMed  Google Scholar 

  32. Stelitano V, Giardina G, Paiardini A, Castiglione N, Cutruzzola F, Rinaldo S (2013) C-di-GMP hydrolysis by Pseudomonas aeruginosa HD-GYP phosphodiesterases: analysis of the reaction mechanism and novel roles for pGpG. PLoS One 8(9):e74920. https://doi.org/10.1371/journal.pone.0074920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bellini D, Caly DL, McCarthy Y, Bumann M, An SQ, Dow JM, Ryan RP, Walsh MA (2014) Crystal structure of an HD-GYP domain cyclic-di-GMP phosphodiesterase reveals an enzyme with a novel trinuclear catalytic iron centre. Mol Microbiol 91(1):26–38. https://doi.org/10.1111/mmi.12447

    Article  CAS  PubMed  Google Scholar 

  34. Miner KD, Kurtz DM Jr (2016) Active site metal occupancy and cyclic di-GMP phosphodiesterase activity of Thermotoga maritima HD-GYP. Biochemistry 55(6):970–979. https://doi.org/10.1021/acs.biochem.5b01227

    Article  CAS  PubMed  Google Scholar 

  35. Miner KD, Klose KE, Kurtz DM Jr (2013) An HD-GYP cyclic di-guanosine monophosphate phosphodiesterase with a non-heme diiron-carboxylate active site. Biochemistry 52(32):5329–5331. https://doi.org/10.1021/bi4009215

    Article  CAS  PubMed  Google Scholar 

  36. Rinaldo S, Paiardini A, Stelitano V, Brunotti P, Cervoni L, Fernicola S, Protano C, Vitali M, Cutruzzola F, Giardina G (2015) Structural basis of functional diversification of the HD-GYP domain revealed by the Pseudomonas aeruginosa PA4781 protein, which displays an unselective bimetallic binding site. J Bacteriol 197(8):1525–1535. https://doi.org/10.1128/jb.02606-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tan H, West JA, Ramsay JP, Monson RE, Griffin JL, Toth IK, Salmond GP (2014) Comprehensive overexpression analysis of cyclic-di-GMP signalling proteins in the phytopathogen Pectobacterium atrosepticum reveals diverse effects on motility and virulence phenotypes. Microbiology 160(Pt 7):1427–1439. https://doi.org/10.1099/mic.0.076828-0

    Article  CAS  PubMed  Google Scholar 

  38. Plate L, Marletta MA (2012) Nitric oxide modulates bacterial biofilm formation through a multicomponent cyclic-di-GMP signaling network. Mol Cell 46(4):449–460. https://doi.org/10.1016/j.molcel.2012.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lovering AL, Capeness MJ, Lambert C, Hobley L, Sockett RE (2011) The structure of an unconventional HD-GYP protein from Bdellovibrio reveals the roles of conserved residues in this class of cyclic-di-GMP phosphodiesterases. MBio 2(5):e00163–e00111. https://doi.org/10.1128/mBio.00163-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Deng MJ, Tao J, Chao E, Ye ZY, Jiang Z, Yu J, Su XD (2018) Novel mechanism for cyclic dinucleotide degradation revealed by structural studies of Vibrio phosphodiesterase V-cGAP3. J Mol Biol 430(24):5080–5093. https://doi.org/10.1016/j.jmb.2018.10.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Sapienza University of Rome (Italy) [to FC RP11715C644A5CCE and SR RM11715C646D693E] for financial support. Dr. Giovanna Boumis is acknowledged for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Cutruzzolà .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rinaldo, S., Paiardini, A., Paone, A., Cutruzzolà, F., Giardina, G. (2020). Structure and Function of HD-GYP Phosphodiesterases. In: Chou, SH., Guiliani, N., Lee, V., Römling, U. (eds) Microbial Cyclic Di-Nucleotide Signaling. Springer, Cham. https://doi.org/10.1007/978-3-030-33308-9_4

Download citation

Publish with us

Policies and ethics