Skip to main content

Calculation of Images of Thin Specimens

  • Chapter
  • First Online:
  • 1646 Accesses

Abstract

This chapter presents approximate methods of calculating transmission electron microscope images of thin specimens. The thickness of the specimen is ignored, which may be appropriate for very thin specimens. Multiple scattering is also generally ignored. This approach is intermediate between the transfer function (in previous chapters) and the multislice and Bloch wave methods (discussed in later chapters) and has the advantage of requiring much less computer time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H. Bethe. Zur theorie des durchgangs schneller korpuskularstrahlen durch materie. Annalen der Physik, 5:325–400, 1930.

    Article  ADS  MATH  Google Scholar 

  2. H. A. Bethe and R. W. Jackiw. Intermediate Quantum Mechanics. Benjamin, Reading, Mass., 2nd edition, 1968.

    Google Scholar 

  3. J. E. Bonevich and L. D. Marks. Contrast transfer theory for non-linear imaging. Ultramicroscopy, 26:313–320, 1988.

    Article  Google Scholar 

  4. M. Born and E. Wolf. Principles of Optics. Pergamon Press, Oxford, 6th edition, 1980.

    MATH  Google Scholar 

  5. Eric G. T. Bosch and Ivan Lazić. Analysis of HR-STEM theory for thin specimens. Ultramicroscopy, 156:59–72, 2015.

    Article  Google Scholar 

  6. W. Coene, G. Janssen, M. Op de Beck, and D. Van Dyck. Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy. Phys. Rev. Letters, 69:3743–3746, 1992.

    Article  ADS  Google Scholar 

  7. R. D. Cowan. The Theory of Atomic Structure and Spectra. Univ. of California Press, Berkeley, 1981.

    Google Scholar 

  8. J. M. Cowley and S. Iijima. Electron microscope image contrast for thin crystals. Z. Naturforsch., 27a:445–451, 1972.

    Article  ADS  Google Scholar 

  9. A. V. Crewe, J. P. Langmore, and M. S. Isaacson. Resolution and contrast in the scanning transmission electron microscope. In B. M. Siegel and D. R. Beaman, editors, Physical Aspects of Electron Microscopy and Microbeam Analysis, pages 47–62. Wiley, New York, 1975.

    Google Scholar 

  10. J. Desseaux, A. Renault, and A. Bourret. Multi-beam images of germanium oriented in (011). Phil. Mag., 35:357–372, 1977.

    Article  ADS  Google Scholar 

  11. P. A. Doyle and P. S. Turner. Relativistic Hartree-Fock x-ray and electron scattering factors. Acta Cryst., A24:390–397, 1968.

    Article  Google Scholar 

  12. J. W. Edington. Practical Electron Microscopy in Materials Science. Van Nostrand Reinhold, New York, 1976.

    Google Scholar 

  13. R. Eisberg and R. Resnick. Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles. Wiley, New York, 2nd edition, 1985.

    Google Scholar 

  14. C. B. Eisenhandler and B. M. Siegel. Imaging of single atoms with the electron microscope by phase contrast. J. Applied Physics, 37:1613–1620, 1966.

    Article  ADS  Google Scholar 

  15. H. A. Ferwerda and F. P. C. Visser. Applications of Glauber’s scattering theory to the scattering of electrons by heavy elements. In P. W. Hawkes, editor, Image Processing and Computer-Aided Design in Electron Optics, pages 212–219. Academic Press, London, 1973.

    Google Scholar 

  16. S. D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo, and Y. Ikuhara. Dynamics of annular bright field scanning transmission electron microscopy. Ultramicroscopy, 110:903–923, 2010.

    Article  Google Scholar 

  17. S. D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo, T. Yamamoto, and Y. Ikuhara. Robust atomic resolution imaging of light elements using scanning transmission electron microscopy. Appl. Phys. Lett., 95:191913, 2009.

    Article  ADS  Google Scholar 

  18. C. Froese Fischer, T. Brage, and P. Jönsson. Computational Atomic Structure, an MCDF Approach. Institute of Physics Publishing, Bristol and London, 1997.

    MATH  Google Scholar 

  19. J. Frank. A study on heavy/light atom discrimination in bright-field electron microscopy. Biophysical J., 12:484–511, 1972.

    Article  ADS  Google Scholar 

  20. A. J. Freeman. Atomic scattering factors for spherical and aspherical charge distributions. Acta Cryst., 12:261–270, 1959.

    Article  Google Scholar 

  21. A. J. Freeman and J. H. Wood. An atomic scattering factor for iron. Acta Cryst., 12:271–273, 1959.

    Article  Google Scholar 

  22. C. Froese-Fischer. The Hartree-Fock Method for Atoms. Wiley, New York, 1977.

    Google Scholar 

  23. R. Glauber and V. Schomaker. The theory of electron diffraction. Phys. Rev., 89:667–671, 1953.

    Article  ADS  MATH  Google Scholar 

  24. J. L. Hutchison and W. G. Waddington. Atomic images of silicon? Ultramicroscopy, 25:93–96, 1988.

    Article  Google Scholar 

  25. M. S. Isaacson, J. Langmore, N. W. Parker, D. Kopf, and M. Utlaut. The study of the adsorption and diffusion of heavy atoms on light element substrates by means of the atomic resolution STEM. Ultramicroscopy, 1:359–376, 1976.

    Article  Google Scholar 

  26. R. Ishikawa, E. Okunishi, H. Sawada, Y. Kondo, F. Hosokawa, and E. Abe. Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nature Mat., 10:278–281, 2011.

    Article  ADS  Google Scholar 

  27. K. Ishizuka. Contrast transfer of crystal images in TEM. Ultramicroscopy, 5:55–65, 1980.

    Article  Google Scholar 

  28. K. Izui, S. Furuno, and H. Otsu. Observations of crystal structure images of silicon. Jap. J. Elect. Micros., 26:129–132, 1977.

    Google Scholar 

  29. W. Kunath, F. Zemlin, and K. Weiss. Apodization in phase-contrast electron microscopy realized with hollow-cone illumination. Ultramicroscopy, 16:123–138, 1985.

    Article  Google Scholar 

  30. J. P. Langmore. Electron microscopy of atoms. In M. A. Hayat, editor, Princ. and Tech. of Electron Microscopy (Biol. App.), Vol. 9, pages 1–63. Van Nostrand, New York, 1978.

    Google Scholar 

  31. R. McWeeny. X-ray scattering by aggregates of bonded atoms, I. analytical approximations in single atom scattering. Acta Cryst., 4:513–519, 1951.

    Article  Google Scholar 

  32. R. McWeeny. X-ray scattering by aggregates of bonded atoms, II. the effects of bonds with applications to H2. Acta Cryst., 5:463–468, 1952.

    Google Scholar 

  33. J. C. Meyer, S. Kurasch, H. J. Park, V. Skakalova, D. Künzel, A. Groß, A. Chuvilin, G. Algara-Siller, S. Roth, T. Iwasaki, U. Starke, J. H. Smet, and U. Kaiser. Experimental analysis of charge redistribution due to chemical bonding by high-resolution transmission electron microscopy. Nature Materials, 10:209–215, 2011.

    Article  ADS  Google Scholar 

  34. G. Moliere. Theorie der streuung schneller gelandener teilchen I. einzelstreuung am abgeschirmten coulomb-field. Z. fur Naturforsch, 2A:133–145, 1947.

    Article  ADS  MATH  Google Scholar 

  35. N. F. Mott. The scattering of electrons by atoms. Proc. Royal Society, A127:658–665, 1930.

    MATH  Google Scholar 

  36. N. F Mott and H. S. W. Massey. The Theory of Atomic Collisions. Clarendon Press, Oxford, 3rd edition, 1965.

    Google Scholar 

  37. M. A. O’Keefe. Resolution-damping functions in non-linear imaging. In G. W. Bailey, editor, Proceedings of the 37st Annual Meeting of the Electron Microscopy Society of America, pages 556–557, Baton Rouge, 1979. Claitor’s Publishing.

    Google Scholar 

  38. S. J. Pennycook. Z-contrast STEM materials science. Ultramicroscopy, 30:58–69, 1989.

    Article  Google Scholar 

  39. S. J. Pennycook. Z-contrast transmission electron microscopy: Direct atomic imaging of materials. Ann. Rev. Mater. Sci., 22:171–195, 1992.

    Article  ADS  Google Scholar 

  40. H. Pulvermacher. Der transmissions-kreuz-koeffizient fur die elektronenmikroskopische abbildung bei partiell koharenter beleuchtung und elektischer instabilitat. Optik, 60:45–60, 1981.

    Google Scholar 

  41. L. Reimer and H. Gilde. Scattering theory and image formation in the electron microscope. In P. W. Hawkes, editor, Image Processing and Computer-Aided Design in Electron Optics, pages 138–167. Academic Press, London, 1973.

    Google Scholar 

  42. H. Rose. Nonstandard imaging methods in electron microscopy. Ultramicroscopy, 2:251–267, 1977.

    Article  Google Scholar 

  43. L. I. Schiff. Quantum Mechanics. McGraw-Hill, New York, third edition, 1968.

    Google Scholar 

  44. J. C. H. Spence, M. A. O’Keefe, and H. Kolar. High resolution image interpretation in crystalline germanium. Optik, 49:307–323, 1977.

    Google Scholar 

  45. Toma Susi, Jacob Madsen, Ursula Ludacka, Jens Jørgen Mortensen, Timothy J. Pennycook, Zhongbo Lee, Jani Kotakoski, Ute Kaiser, and Jannik C. Meyer. Efficient first principles simulation of electron scattering factors for transmission electron microscopy. Ultramicroscopy, 197:16–22, 2019.

    Article  Google Scholar 

  46. L. Szasz. The Electronic Structure of Atoms. Wiley, New York, 1992.

    Google Scholar 

  47. Michael M. J. Treacy. Z dependence of electron scattering by single atoms into annular dark-field detectors. Microscopy and Microanalysis, 17:847–858, 2011.

    Article  Google Scholar 

  48. E. Zeitler and H. Olsen. Screening effects in elastic scattering. Physical Review, 136:A1546–A1552, 1964.

    Article  ADS  Google Scholar 

  49. E. Zeitler and H. Olsen. Complex scattering amplitudes in elastic electron scattering. Physical Review, 162:1439–1447, 1967.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kirkland, E.J. (2020). Calculation of Images of Thin Specimens. In: Advanced Computing in Electron Microscopy. Springer, Cham. https://doi.org/10.1007/978-3-030-33260-0_5

Download citation

Publish with us

Policies and ethics