Skip to main content

Classifying Stages of Mild Cognitive Impairment via Augmented Graph Embedding

  • Conference paper
  • First Online:
Book cover Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy (MBIA 2019, MFCA 2019)

Abstract

Mild Cognitive Impairment (MCI) is a clinically intermediate stage in the course of Alzheimer’s disease (AD). MCI does not always lead to dementia. Some MCI patients may stay in the MCI status for the rest of their life, while others will develop AD eventually. Therefore, classification methods that help to distinguish MCI from earlier or later stages of the disease are important to understand the progression of AD. In this paper, we propose a novel computational framework - named Augmented Graph Embedding, or AGE - to tackle this challenge. In this new AGE framework, the random walk approach is first applied to brain structural networks derived from diffusion-weighted MRI to extract nodal feature vectors. A technique adapted from natural language processing is used to analyze these nodal feature vectors, and a multimodal augmentation procedure is adopted to improve classification accuracy. We validated this new AGE framework on data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Results show advantages of the proposed framework, compared to a range of existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Petersen, R.C., et al.: Current concepts in mild cognitive impairment. Arch. Neurol. 58(12), 1985–1992 (2001)

    Article  Google Scholar 

  2. Dawe, B., Procter, A., Philpot, M.: Concepts of mild memory impairment in the elderly and their relationship to dementia - a review. Int. J. Geriatr. Psychiatry 7(7), 473–479 (1992)

    Article  Google Scholar 

  3. Petersen, R.C.: : Clinical characterization and outcome (vol 56, pg 303, 1999). Arch. Neurol-Chic. 56(6), 760 (1999)

    Google Scholar 

  4. Lee, E.S., et al.: Default mode network functional connectivity in early and late mild cognitive impairment results from the Alzheimer’s disease neuroimaging initiative. Alzheimer Dis. Assoc. Disord. 30(4), 289–296 (2016)

    Article  Google Scholar 

  5. Aisen, P.S., et al.: Clinical core of the Alzheimer’s disease neuroimaging initiative: progress and plans. Alzheimer’s Dement. 6(3), 239–246 (2010)

    Article  Google Scholar 

  6. Goryawala, M., Zhou, Q., Barker, W., Loewenstein, D.A., Duara, R., Adjouadi, M.: Inclusion of neuropsychological scores in atrophy models improves diagnostic classification of alzheimer’s disease and mild cognitive impairment. Comput. Intell. Neurosci. 2015, 865265 (2015)

    Article  Google Scholar 

  7. Shakeri, M., Lombaert, H., Tripathi, S., Kadoury, S.: Deep spectral-based shape features for Alzheimer’s disease classification. In: Reuter, M., Wachinger, C., Lombaert, H. (eds.) SeSAMI 2016. LNCS, vol. 10126, pp. 15–24. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-51237-2_2

    Chapter  Google Scholar 

  8. Korolev, S., Safiullin, A., Belyaev, M., Dodonova, Y.: Residual and plain convolutional neural networks for 3D brain MRI classification. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 835–838. IEEE (2017)

    Google Scholar 

  9. Jessen, F., et al.: AD dementia risk in late MCI, in early MCI, and in subjective memory impairment. Alzheimer’s Dement. 10(1), 76–83 (2014)

    Article  Google Scholar 

  10. Hett, K., Ta, V.-T., Giraud, R., Mondino, M., Manjón, José V., Coupé, P.: Patch-based DTI grading: application to Alzheimer’s disease classification. In: Wu, G., Coupé, P., Zhan, Y., Munsell, Brent C., Rueckert, D. (eds.) Patch-MI 2016. LNCS, vol. 9993, pp. 76–83. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47118-1_10

    Chapter  Google Scholar 

  11. Singh, S., et al.: Deep-learning-based classification of FDG-PET data for Alzheimer’s disease categories. In: 13th International Conference on Medical Information Processing and Analysis, 2017, vol. 10572, p. 105720 J. International Society for Optics and Photonics (2017)

    Google Scholar 

  12. Tripathi, S., Nozadi, S.H., Shakeri, M., Kadoury, S.: Sub-cortical shape morphology and voxel-based features for Alzheimer’s disease classification. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 991–994. IEEE (2017)

    Google Scholar 

  13. Nozadi, S.H., Kadoury, S., The Alzheimer’s Disease Neuroimaging Initiative: Classification of Alzheimer’s and MCI patients from semantically parcelled PET images: a comparison between AV45 and FDG-PET. Int. J. Biomed. Imaging 2018, 1247430 (2018)

    Google Scholar 

  14. La Rocca, M., Amoroso, N., Monaco, A., Bellotti, R., Tangaro, S.: A novel approach to brain connectivity reveals early structural changes in Alzheimer’s disease. Physiol. Meas. 39(7), 074005 (2018)

    Google Scholar 

  15. Wang, Q., et al.: The added value of diffusion-weighted MRI-derived structural connectome in evaluating mild cognitive impairment: a multi-cohort validation1. J. Alzheimers Dis. 64(1), 149–169 (2018)

    Article  Google Scholar 

  16. Prasad, G., Joshi, S.H., Nir, T.M., Toga, A.W., Thompson, P.M., Alzheimer’s Disease Neuroimaging Initiative: Brain connectivity and novel network measures for Alzheimer’s disease classification. Neurobiol. Aging 36(Suppl. 1), S121–S131 (2015)

    Google Scholar 

  17. Zhan, L., et al.: Multiple stages classification of Alzheimer’s disease based on structural brain networks using generalized low rank approximations (GLRAM). In: O’Donnell, L., Nedjati-Gilani, G., Rathi, Y., Reisert, M., Schneider, T. (eds.) Computational Diffusion MRI. Mathematics and Visualization, pp. 35–44. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11182-7_4

    Chapter  Google Scholar 

  18. Kurmukov, A., et al.: Classifying phenotypes based on the community structure of human brain networks. In: Cardoso, M.J., et al. (eds.) GRAIL/MFCA/MICGen -2017. LNCS, vol. 10551, pp. 3–11. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67675-3_1

    Chapter  Google Scholar 

  19. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864. ACM (2016)

    Google Scholar 

  20. Zhan, L., et al.: Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease. Front Aging Neurosci. 7, 48 (2015)

    Article  Google Scholar 

  21. Lazar, M., et al.: White matter tractography using diffusion tensor deflection. Hum. Brain Mapp. 18(4), 306–321 (2003)

    Article  Google Scholar 

  22. Conturo, T.E., et al.: Tracking neuronal fiber pathways in the living human brain. Proc. Natl. Acad. Sci. U. S. A. 96(18), 10422–10427 (1999)

    Article  Google Scholar 

  23. Aganj, I., et al.: A Hough transform global probabilistic approach to multiple-subject diffusion MRI tractography. Med. Image Anal. 15(4), 414–425 (2011)

    Article  Google Scholar 

  24. Parker, G.J., Haroon, H.A., Wheeler-Kingshott, C.A.: A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. J. Magn. Reson. Imaging 18(2), 242–254 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, H. et al. (2019). Classifying Stages of Mild Cognitive Impairment via Augmented Graph Embedding. In: Zhu, D., et al. Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy. MBIA MFCA 2019 2019. Lecture Notes in Computer Science(), vol 11846. Springer, Cham. https://doi.org/10.1007/978-3-030-33226-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33226-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33225-9

  • Online ISBN: 978-3-030-33226-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics