Skip to main content

Learning Human Cognition via fMRI Analysis Using 3D CNN and Graph Neural Network

  • Conference paper
  • First Online:
Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy (MBIA 2019, MFCA 2019)

Abstract

Human cognitive control involves how mental resources are allocated when the brain processes various information. The study of such complex brain functionality is essential in understanding different neurological disorders. To investigate cognition control, various cognitive tasks have been designed and functional MRI data have been collected. In this paper, we study uncertainty representation, an important problem in human cognition study, with task-evoked fMRI data. Our goals are to learn how brain region of interests (ROIs) are activated under tasks with different uncertainty levels and how they interact with each other. We propose a novel neural network architecture to achieve the two goals simultaneously. Our architecture uses a 3D convolutional neural network (CNN) to extract a high-level representation for each ROI, and uses a graph neural network module to capture the interactions between ROIs. Empirical evaluations reveal that our method significantly outperforms the existing methods, and the derived brain network is consistent with domain knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bassett, D.S., Yang, M., Wymbs, N.F., Grafton, S.T.: Learning-induced autonomy of sensorimotor systems. Nat. Neurosci. 18(5), 744 (2015)

    Article  Google Scholar 

  2. Belilovsky, E., Kastner, K., Varoquaux, G., Blaschko, M.B.: Learning to discover sparse graphical models. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 440–448. JMLR. org (2017)

    Google Scholar 

  3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  4. Castellanos, F.X., Sonuga-Barke, E.J., Milham, M.P., Tannock, R.: Characterizing cognition in ADHD: beyond executive dysfunction. Trends Cognit. Sci. 10(3), 117–123 (2006)

    Article  Google Scholar 

  5. Chen, P.H., et al.: A convolutional autoencoder for multi-subject FMRI data aggregation. arXiv preprint (2016). arXiv:1608.04846

  6. Cole, M.W., Bassett, D.S., Power, J.D., Braver, T.S., Petersen, S.E.: Intrinsic and task-evoked network architectures of the human brain. Neuron 83(1), 238–251 (2014)

    Article  Google Scholar 

  7. Cole, M.W., Schneider, W.: The cognitive control network: integrated cortical regions with dissociable functions. Neuroimage 37(1), 343–360 (2007)

    Article  Google Scholar 

  8. Diamond, A., Barnett, W.S., Thomas, J., Munro, S.: Preschool program improves cognitive control. Science 318(5855), 1387 (2007)

    Article  Google Scholar 

  9. Elton, A., Gao, W.: Task-positive functional connectivity of the default mode network transcends task domain. J. Cognit. Neurosci. 27(12), 2369–2381 (2015)

    Article  Google Scholar 

  10. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: methods and applications. IEEE Data Eng. Bull. 40(3), 52–74 (2017)

    Google Scholar 

  11. Hellyer, P.J., Shanahan, M., Scott, G., Wise, R.J., Sharp, D.J., Leech, R.: The control of global brain dynamics: opposing actions of frontoparietal control and default mode networks on attention. J. Neurosci. 34(2), 451–461 (2014)

    Article  Google Scholar 

  12. Kelly, A.C., Uddin, L.Q., Biswal, B.B., Castellanos, F.X., Milham, M.P.: Competition between functional brain networks mediates behavioral variability. Neuroimage 39(1), 527–537 (2008)

    Article  Google Scholar 

  13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint (2016). arXiv:1609.02907

  14. Leech, R., Kamourieh, S., Beckmann, C.F., Sharp, D.J.: Fractionating the default mode network: distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control. J. Neurosci. 31(9), 3217–3224 (2011)

    Article  Google Scholar 

  15. Ni, X., Yan, Z., Wu, T., Fan, J., Chen, C.: A region-of-interest-reweight 3D convolutional neural network for the analytics of brain information processing. In: Medical Image Computing and Computer Assisted Intervention - MICCAI, pp. 302–310 (2018)

    Google Scholar 

  16. Nie, D., Zhang, H., Adeli, E., Liu, L., Shen, D.: 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 212–220. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_25

    Chapter  Google Scholar 

  17. Nielsen, A.N., Greene, D.J., Gratton, C., Dosenbach, N.U., Petersen, S.E., Schlaggar, B.L.: Evaluating the prediction of brain maturity from functional connectivity after motion artifact denoising. Cereb. Cortex 29(6), 2455–2469 (2018)

    Article  Google Scholar 

  18. Power, J.D., Schlaggar, B.L., Lessov-Schlaggar, C.N., Petersen, S.E.: Evidence for hubs in human functional brain networks. Neuron 79(4), 798–813 (2013)

    Article  Google Scholar 

  19. Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., Shulman, G.L.: A default mode of brain function. Proc. National Acad. Sci. 98(2), 676–682 (2001)

    Article  Google Scholar 

  20. Ridderinkhof, K.R., Ullsperger, M., Crone, E.A., Nieuwenhuis, S.: The role of the medial frontal cortex in cognitive control. Science 306(5695), 443–447 (2004)

    Article  Google Scholar 

  21. Schmidt, M., Murphy, K., Fung, G., Rosales, R.: Structure learning in random fields for heart motion abnormality detection. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  22. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Champaign (1949)

    MATH  Google Scholar 

  23. Solomon, M., Ozonoff, S.J., Ursu, S., Ravizza, S., Cummings, N., Ly, S., Carter, C.S.: The neural substrates of cognitive control deficits in autism spectrum disorders. Neuropsychologia 47(12), 2515–2526 (2009)

    Article  Google Scholar 

  24. Spreng, R.N., Sepulcre, J., Turner, G.R., Stevens, W.D., Schacter, D.L.: Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. J. Cognit. Neurosci. 25(1), 74–86 (2013)

    Article  Google Scholar 

  25. Tan, M., Shi, Q., van den Hengel, A., Shen, C., Gao, J., Hu, F., Zhang, Z.: Learning graph structure for multi-label image classification via clique generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4100–4109 (2015)

    Google Scholar 

  26. Van Den Heuvel, M.P., Mandl, R.C., Kahn, R.S., Hulshoff Pol, H.E.: Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum. Brain Mapp. 30(10), 3127–3141 (2009)

    Article  Google Scholar 

  27. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (2018)

    Google Scholar 

  28. Wu, T., et al.: Hick-hyman law is mediated by the cognitive control network in the brain. Cereb. Cortex 28(7), 1–16 (2017)

    Google Scholar 

  29. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? In: International Conference on Learning Representations (2019)

    Google Scholar 

  30. Zhang, X., He, L., Chen, K., Luo, Y., Zhou, J., Wang, F.: Multi-view graph convolutional network and its applications on neuroimage analysis for parkinson’s disease. arXiv preprint (2018). arXiv:1805.08801

Download references

Acknowledgement

This work was partially supported by NSF IIS-1855759 and CCF-1855760.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuyan Ni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ni, X., Gao, T., Wu, T., Fan, J., Chen, C. (2019). Learning Human Cognition via fMRI Analysis Using 3D CNN and Graph Neural Network. In: Zhu, D., et al. Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy. MBIA MFCA 2019 2019. Lecture Notes in Computer Science(), vol 11846. Springer, Cham. https://doi.org/10.1007/978-3-030-33226-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33226-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33225-9

  • Online ISBN: 978-3-030-33226-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics