Skip to main content

Retinopathy Analysis Based on Deep Convolution Neural Network

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1213))

Abstract

At medical checkups or mass screenings, the fundus examination is effective for early detection of systemic hypertension, arteriosclerosis, diabetic retinopathy, etc. In most cases, ophthalmologists and physicians grade retinal images by the condition of the blood vessels, lesions. However, human observation does not provide quantitative results, thus blood vessel analysis is an important process in determining hypertension and arteriosclerosis, quantitatively. This chapter describes the latest automated blood vessel extraction using the deep convolution neural network (DCNN). Diabetic retinopathy is a common cardiovascular disease and a major factor in blindness. Therefore, early detection of diabetic retinopathy is very important to preventing blindness. A microaneurysm is an initial sign of diabetic retinopathy, and much research has been conducted for microaneurysm detection. This chapter also describes diabetic retinopathy detection and automated microaneurysm detection using the DCNN.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Scheie HG (1953) Evaluation of ophthalmoscopic changes of hypertension and arteriolar sclerosis. Arch Ophthalmol 49(2):117–138

    Article  CAS  Google Scholar 

  2. Wong TY, Mitchell P (2004) Hypertensive retinopathy. N Engl J Med 351(22):2310–2317

    Article  CAS  Google Scholar 

  3. Soares JV, Leandro JJ, Cesar Júnior RM, Jelinek HF, Cree MJ (2006) Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans Med Imaging 25(9):1214–1222

    Article  Google Scholar 

  4. Rangayyan RM, Ayres FJ, Oloumi F, Oloumi F, Eshghzadeh-Zanjani P (2008) Detection of blood vessels in the retina with multiscale Gabor filters. J Electron Imaging 17(2):023018

    Article  Google Scholar 

  5. Ricci E, Perfetti R (2007) Retinal blood vessel segmentation using line operator and support vector classification. IEEE Trans Med Imaging 26(10):1357–1365

    Article  Google Scholar 

  6. Staal J, Abràmoff MD, Niemeijer M, Viergever MA, van Ginneken B (2004) Ridge based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23(4):501–509

    Article  Google Scholar 

  7. Akatsuka Y, Oost E, Shimizu A, Kobatake A, Furukawa D, Katayama A (2010) Vessel segmentation in eye fundus images using ... eye fundus image based on ensemble learning and a classifier cascade. IEICE Tech Rep 109(407):143–148

    Google Scholar 

  8. Hatanaka Y, Nakagawa T, Hayashi Y, Aoyama A, Zhou X, Hara T, Fujita H, Mizukusa Y, Fujita A, Kakogawa M (2005) Automated detection algorithm for arteriolar narrowing on fundus images. In: Proceedings of the 27th Annual International Conference of the IEEE-EMBS 2005, pp 286–289

    Google Scholar 

  9. Nakagawa T, Hayashi Y, Hatanaka Y, Aoyama A, Mizukusa Y, Fujita A, Kakogawa M, Hara T, Fujita H, Yamamoto T (2006) Recognition of optic nerve head using blood-vessel-erased image and its application to production of simulated stereogram in computer-aided diagnosis system for retinal images. IEICE Trans Inf Syst J89-D(11):2491–2501

    Google Scholar 

  10. Iwase T, Muramatsu C, Hatanaka Y, Zhou X, Hara T, Fujita H (2009) Automated detection and classification of major arteries and veins for arteriolar narrowing analysis on retinal fundus images. IEICE Tech Rep 109(407):189–193

    Google Scholar 

  11. Hatanaka Y, Samo K, Ogohara K, Sunayama W, Muramatsu C, Okumura S, Fujita H (2017) Automated blood vessel extraction based on high-order local autocorrelation features on retinal images. In: VipIMAGE2017, vol 27, pp 803–810

    Google Scholar 

  12. Fu H, Yanwu X, Wong D, Jiang L (2016) Retinal vessel segmentation via deep learning network and fully-connected conditional random fields. In: Proceedings of the IEEE 13th International Symposium on Biomedical Imaging, pp 698–701

    Google Scholar 

  13. Martina M, Pavle P, Sven L (2015) Retinal vessel segmentation using deep neural networks. In: Proceedings of the VISAPP, vol 1, pp 577–581

    Google Scholar 

  14. Dasgupta A, Singh S (2017) A fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation. In: Proceedings of the ISBI, pp 248–251

    Google Scholar 

  15. Ikawa H, Hatanaka Y, Sunayama W, Ogohara K, Muramatsu C, Fujita H (2019) Arteriovenous classification method using convolutional neural network for early detection of retinal vascular lesion. In: Proceedings of the SPIE 11050 International Forum on Medical Imaging in Asia 2019, p 110501M

    Google Scholar 

  16. Foracchia M, Grisan E, Ruggeri A (2005) Luminosity and contrast normalization in retinal images. Med Image Anal 9(3):179–190

    Article  Google Scholar 

  17. Le Q, Karpenko A, Ngiam J, Ng A (2011) Ica with reconstruction cost for efficient overcomplete feature learning. Adv Neural Inf Process Syst:1017–1025

    Google Scholar 

  18. Friedman J (1987) Exploratory projection pursuit. J Am Stat Assoc 82(397):249–266

    Article  Google Scholar 

  19. Bell A, Sejnowski T (1997) The “Independent Components” of natural scenes are edge filters. Vis Res 37(23):3327–3338

    Article  CAS  Google Scholar 

  20. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. In: Proceedings of the IEEE, pp 1–46

    Article  Google Scholar 

  21. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. Proc Neural Inf Process Syst 2012:1–9

    Google Scholar 

  22. Niemeijer M, Xu X, Dumitrescu AV, Gupta P, Ginneken B, Folk JC, Abrámoff M (2011) Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs. IEEE Trans Med Imaging 30(11):1941–1950

    Article  Google Scholar 

  23. Dashtbozorg B, Mendonca AM, Penas S, Campilho A (2014) RetinaCAD, a system for the assessment of retinal vascular changes. In: Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 6328–6331

    Google Scholar 

  24. Vázquez SG, Cancela B, Barreira N, Penedo MG, Rodríguez-Blanco M, Pena Sei-jo M, Coll de Tuero G, Barceló MA, Saez M (2013) Improving retinal artery and vein classification by means of a minimal path approach. Mach Vis Appl 24(5):919–930

    Article  Google Scholar 

  25. Muramatsu C, Hatanaka Y, Iwase T, Hara T, Fujita H (2011) Automated selection of major arteries and veins for measurement of arteriolar-to-venular diameter ratio on retinal fundus images. Comput Med Imaging Graph 35(6):472–480

    Article  Google Scholar 

  26. Hatanaka Y, Tachiki H, Okumura S, Ogohara K, Muramatsu C, Fujita H (2017) Automated independent extraction of major arteries and veins on retinal images. Med Imaging Inf Sci 34(3):136–140

    Google Scholar 

  27. Meyer MI, Galdran A, Costa P, Mendonça AM, Campilho A (2018) Deep convolutional artery/vein classification of retinal vessels. In: ICIAR 2018 Lecture Notes in Computer Science, vol 10882, pp 622–630

    Google Scholar 

  28. Girard F, Kavalec C, Cheriet F (2019) Joint segmentation and classification of retinal arteries/veins from fundus images. Artif Intell Med 94:96–109

    Article  Google Scholar 

  29. Hu Q, Abràmoff MD, Garvin MK (2013) Automated separation of binary overlapping trees in low-contrast color retinal images. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2013), pp 436–443

    Chapter  Google Scholar 

  30. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1–9

    Google Scholar 

  31. Knudtson MD, Lee KE, Hubbard LD, Wong TY, Klein R, Klein BEK (2003) Revised formulas for summarizing retinal vessel diameters. Curr Eye Res 27(3):143–149

    Article  Google Scholar 

  32. Cheung N, Mitchell P, Wong TY (2010) Diabetic retinopathy. Lancet 376(9735):124–136

    Article  Google Scholar 

  33. Niemeijer M, van Ginnerken B, Cree MJ, Mizutani A, Quellec G, Sanchez CI, Zhang B, Hornero R, Lamard M, Muramatsu C, Wu X, Cazuquel G, You J, Mayo A, Li Q, Hatanaka Y, Cochener B, Roux C, Karray F, Garcia M, Fujita H, Abramoff MD (2010) Retinopathy Online Challenge: automatic detection of microaneurysms in digital color fundus photographs. IEEE Trans Med Imaging 29(1):185–195

    Article  Google Scholar 

  34. Adal KM, Sidibe D, Ail S, Chaum E, Karnowski TP, Mériaudeau F (2014) Automated detection of microaneurysms using scale-adapted blood analysis and semi-supervised learning. Comput Methods Programs Biomed 114(1):1–10

    Article  Google Scholar 

  35. Antal B, Hajdu A (2012) An ensemble-based system for microaneurysm detection and diabetic retinopathy grading. IEEE Trans Biomed Eng 59(6):1720–1726

    Article  Google Scholar 

  36. Seoud L, Hurtut T, Chelbi J, Cheriet F, Langlois JM (2016) Red lesion detection using dynamic shape features for diabetic retinopathy screening. IEEE Trans Med Imaging 35(4):1116–1126

    Article  Google Scholar 

  37. Dai B, Wu X, Bu W (2016) Retinal microaneurysms detection using gradient vector analysis and class imbalance classification. PLoS One 11(8):0161556

    Google Scholar 

  38. Inoue T, Hatanaka Y, Okumura S, Ogohara K, Muramatsu C, Fujita H (2015) Automatic microaneurysm detection in retinal fundus images by density gradient vector concentration. J Inst Image Electron Eng Jpn 44(1):58–66

    Google Scholar 

  39. Hatanaka Y, Inoue T, Ogohara K, Okumura S, Muramatsu C, Fujita H (2018) Automated microaneurysm detection in retinal fundus images based on the combination of three detectors. J Med Imaging Health Inform 8(5):1103–1112

    Article  Google Scholar 

  40. Haaloi M (2016) Improved microaneurysm detection using deep neural networks. arXiv:1505.04424v2

    Google Scholar 

  41. Chudzik P, Majumdar S, Caliva F, AI-Diri B, Hunter A (2018) Microaneurysm detection using fully convolutional neural networks. Comp Methods Programs Biomed 158:185–192

    Article  Google Scholar 

  42. Miyashita M, Hatanaka Y, Ogohara K, Muramatsu C, Sunayama W, Fujita H (2018) Automatic detection of microaneurysms in retinal image by using convolutional neural network. Med Imaging Technol 36(4):189–195

    Google Scholar 

  43. Kauppi T, Kalesnykiene V, Kamarainen JK, Lensu L, Sorri I, Raninen A, Voutilainen R, Uusitalo H, Kälviäinen H, Pietilä J (2007) Diaretdb1 diabetic retinopathy database and evaluation protocol. In: Proceedings of the 11th Conference on Medical Image Understanding and Analysis 2007, pp 61–65

    Google Scholar 

  44. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621

    Article  Google Scholar 

  45. Weszka JS, Dyer CR, Rosenfeld A (1976) A comparative study of texture measures for terrain classification. IEEE Trans Syst Man Cybern 6(4):269–285

    Article  Google Scholar 

  46. Galloway MM (1975) Texture analysis using gray level run lengths. Comput Graph Image Process 4(2):172–179

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Hatanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hatanaka, Y. (2020). Retinopathy Analysis Based on Deep Convolution Neural Network. In: Lee, G., Fujita, H. (eds) Deep Learning in Medical Image Analysis . Advances in Experimental Medicine and Biology, vol 1213. Springer, Cham. https://doi.org/10.1007/978-3-030-33128-3_7

Download citation

Publish with us

Policies and ethics