Skip to main content

Distributed Spatio-Temporal Voronoi Diagrams: State of Art and Application to the Measurement of Spatial Accessibility in Urban Spaces

  • Conference paper
  • First Online:
Book cover Advanced Intelligent Systems for Sustainable Development (AI2SD’2019) (AI2SD 2019)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 92))

Abstract

Irregular development and rapid changes are largely used to contribute to the production of large and uncontrollable data, making the management, analysis, processing, storage and interpretation of these massive spatial data extremely efficient. As a result, the displacement at the level of urban spaces becomes noticeably difficult. In this article, we are implementing a new approach that uses spatiotemporally voronoï diagrams based on a distributed architecture to solve large data processing problems on the one hand, and spatial accessibility in urban areas problems on the other hand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mabrouk, A., Boulmakoul, A., Karim, L., Lbath, A.: Safest and shortest itineraries for transporting hazardous materials using split points of voronoï spatial diagrams based on spatial modeling of vulnerable zones. Procedia Comput. Sci. 109, 156–163 (2017). https://doi.org/10.1016/j.procs.2017.05.311

    Article  Google Scholar 

  2. Mondo, D.G.: Un modèle de graphe spatio-temporel pour représenter l’évolution d’entités géographiques, thèse, l’UBO, pp. 1–163, octobre 2011

    Google Scholar 

  3. Kurata, Y., Egenhofer, M.J.: The head-body-tail intersection for spatial relations between directed line segments. In: GIScience Geographic Information Science. Lecture Notes in Computer Science, vol. 4197, pp. 269–286 (2006)

    Google Scholar 

  4. Freksa, C.: Using orientation information for qualitative spatial reasoning. In: Spatio-Temporal Reasoning, pp. 162–178 (1992)

    Google Scholar 

  5. Schlieder, C.: Reasoning about ordering. In: Frank, A., Kuhn, W.E. (eds.) COSIT, Lecture Notes in Computer Science, vol. 988, pp. 341–349 (1995)

    Google Scholar 

  6. Langran, G., Chrisman, N.R.: A framework for temporal geaographic information systems. Cartographica 25(3), 1–14 (1988)

    Article  Google Scholar 

  7. Parkes, D., Thrift, N.: Times, spaces and places. a chronogeographic perspective. Geograph. J. 147(2), 247 (1981). https://doi.org/10.2307/634576

    Article  Google Scholar 

  8. Frihida, A.: Contribution à la modélisation des données spatio-temporelles. Traitement du signal et de l’image. Ecole Nationale d’Ingénieurs de Tunis, pp. 13–20 (2015)

    Google Scholar 

  9. Jiang, L., et al.: A neural network method for the reconstruction of winter wheat yield series based on spatio-temporal heterogeneity. Comput. Electron. Agric. 154, 46–53 (2018). https://doi.org/10.1016/j.compag.2018.08.047

    Article  Google Scholar 

  10. Pollnow, S., et al.: An adaptive spatio-temporal gaussian filter for processing cardiac optical mapping data. Comput. Biol. Med. 102, 267–277 (2018). https://doi.org/10.1016/j.compbiomed.2018.05.029

    Article  Google Scholar 

  11. Zgaya, H.: Conception et optimisation distribuée d’un système d’information d’aide à la mobilité urbaine: Une approche multi-agent pour la recherche et la composition des services liés au transport, p. 241 (2007)

    Google Scholar 

  12. Bouha, N.: Modélisation, approche multi agent et outils d’aide à la décision applique sur les systèmes du trafic routier urbain, p. 8 (2014)

    Google Scholar 

  13. Ahmed, H.S., et al.: Une approche ASIF distribuée pour le calcul des émissions CO2 dans les chaines logistiques marocaines (2014). https://doi.org/10.13140/rg.2.1.2615.0166

  14. Xia, D., Wang, B., Li, Y., Rong, Z., Zhang, Z.: An efficient MapReduce-based parallel clustering algorithm for distributed traffic subarea division. Discrete Dyn., Nat (2015)

    Book  Google Scholar 

  15. Boulmakoul, A., Karim, L., Daissaoui, A.: Un système distribué proactif à base d’e-phéromone floue pour la prévision et l’analytique des patterns de congestions du trafic urbain dans un environnement cloud, p. 15 (2016)

    Google Scholar 

  16. Mabrouk, A., Boulmakoul, A.: Nouvelle approche basée sur le calcul des itinéraires courts et sûrs pour le TMD favorisant l’accès rapide aux secours, pp. 7–9 (2017)

    Google Scholar 

  17. Kos, M., et al.: A Speech-based distributed architecture platform for an intelligent ambience. Comput. Electr. Eng. 71, 818–832 (2018)

    Article  Google Scholar 

  18. Ledoux, H., Gold, C.M.: Modelling three-dimensional geoscientific fields with the voronoï diagram and its dual (2006)

    Google Scholar 

  19. Okabe, A., Boots, B., Sugihara, K., Nok Chiu, S., Kendall, D.G.: Spatial Tessellation: Concepts and Applications of Voronoï Diagrams. Wiley, Chichester (2000). https://doi.org/10.1002/9780470317013

    Book  MATH  Google Scholar 

  20. Okabe, A., Satoh, T., Furuta, T., Suzuki, A., Okano, K.: Generalized network Voronoï diagrams: concepts, computational methods, and applications. Int. J. Geograph. Inf. Sci. (2008)

    Google Scholar 

  21. Erwig, M.: The graph Voronoï diagram with applications. Networks, 156–163 (2000)

    Google Scholar 

  22. Kanoulas, E., Du, Y., Xia, T., Zhang, D.: Finding fastest paths on a road network with speed patterns. In: ICDE, pp. 10–19 (2006)

    Google Scholar 

  23. Zhao, L., Ohshima, T., Nagamochi, H.: A* Algorithm for the time-dependent shortest path problem, pp. 3–6 (2008)

    Google Scholar 

  24. Mabrouk, A., Boulmakoul, A.: Logicielle intégrant un système spatial décisionnel pour la géo-gouvernance des réseaux urbains. In: Conference ASD, pp. 8–9 (2013)

    Google Scholar 

  25. Mabrouk, A., Boulmakoul, A.: Modèle Spatial Objet basé sur les Diagrammes Spatiaux de Voronoï pour la géo-gouvernance des espaces urbains. In: Conference INTIS, pp. 10–11(2012)

    Google Scholar 

  26. Mabrouk, A., Boulmakoul, A., Karim, L.: Support d’aide à la décision basé sur un modèle spatial de Voronoï pour la géo-gouvernance des réseaux de transport de matières dangereuses dans un milieu urbain. In: Conference INTIS 2016, p. 14 (2016)

    Google Scholar 

  27. Mabrouk, A., Aggour, H., Boulmakoul, A.: Processus de calcul parallèle des réseaux spatiaux de Voronoï basé sur une architecture distribuée. In: Conference ASD, pp. 2–13 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafssa Aggour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aggour, H., Mabrouk, A. (2020). Distributed Spatio-Temporal Voronoi Diagrams: State of Art and Application to the Measurement of Spatial Accessibility in Urban Spaces. In: Ezziyyani, M. (eds) Advanced Intelligent Systems for Sustainable Development (AI2SD’2019). AI2SD 2019. Lecture Notes in Networks and Systems, vol 92. Springer, Cham. https://doi.org/10.1007/978-3-030-33103-0_11

Download citation

Publish with us

Policies and ethics