Skip to main content

Optical Clearing and Tissue Imaging

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

Abstract

Imaging methods are a powerful tool for diagnostic purposes. In this chapter, the most important light-imaging methods, their advantages, and drawbacks are described. The advantages of radiation-free light-based imaging methods relative to traditional radiation methods, such as X-ray, magnetic resonance, or positron emission imaging, are indicated, and the recent advances to improve probing depth, contrast, and resolution in thick tissues are demonstrated. Some historical aspects and recent improvements in light-imaging methods, such as optical coherence tomography, speckle-imaging, second harmonic generation, or light-sheet microscopies, are presented. Due to the recent combination of optical immersion clearing with light-based imaging methods, several studies have been reported, where high-quality images and 3D reconstruction have been obtained for various tissues, providing an alternative to traditional histology or histopathology methods. The purpose of optical clearing is to reduce light scattering, but tissue clearing is obtained through three mechanisms: tissue dehydration, refractive index matching, and protein dissociation. This last mechanism leads to a reduction in the intensity of protein fluorescence, which can be a disadvantage in fluorescence imaging methods. The selection of certain clearing protocols that minimizes or eliminates protein dissociation has been made by some researchers, and a review of such literature is made in the various sections of this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Li, Developing a Technique for Combining Light and Ultrasound for Deep Tissue Imaging (MS thesis), Sweden: Lund University, 2018

    Google Scholar 

  2. E.A. Genina, A.N. Bashkatov, V.V. Tuchin, Tissue optical immersion clearing. Expert Rev. Med. Devices 7(6), 825–842 (2010)

    Article  Google Scholar 

  3. V.V. Tuchin, Optical Clearing of Tissues and Blood (SPIE Press, Bellingham, WA, 2006)

    Google Scholar 

  4. L. Oliveira, M.I. Carvalho, E.M. Nogueira, V.V. Tuchin, Diffusion characteristics of ethylene glycol in skeletal muscle. J. Biomed. Opt. 20(5), 051019 (2015)

    Article  ADS  Google Scholar 

  5. D.S. Richardson, J.W. Lichtman, Clarifying tissue clearing. Cell 162, 246–257 (2015)

    Article  Google Scholar 

  6. P.S. Tsai, P. Blinder, B.J. Migliori, J. Neev, Y. Jin, J.A. Squier, D. Kleinfeld, Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems. Curr. Opin. Biotech. 20, 90–99 (2009)

    Article  Google Scholar 

  7. S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, V.V. Tuchin, Comparative study of the optical properties of colon mucosa and colon precancerous polyps between 400 and 1000 nm, in Dynamics and Fluctuations in Biomedical Photonics XIV, ed. by V.V. Tuchin, K.V. Larin, M.J. Leahy, R.K. Wang. Proc. SPIE 10063, 100631L (2017)

    Article  Google Scholar 

  8. H. Duong, M. Han, A multispectral LED array for the reduction of background autofluorescence in brain tissue. J. Neurosci. Methods 220, 46–54 (2013)

    Article  Google Scholar 

  9. B. Clancy, L.J. Cauller, Reduction of background autofluorescence in brain sections following immersion in sodium borohydride. J. Neurosci. Methods 83, 97–102 (1998)

    Article  Google Scholar 

  10. T. Zimmermann, Spectral imaging and linear unmixing in light microscopy. Adv. Biochem. Eng. Biotechnol. 95, 245–265 (2005)

    Google Scholar 

  11. A.Y. Sdobnov, V.V. Tuchin, J. Lademann, M.E. Darvin, Confocal Raman microscopy supported by optical clearing treatment of the skin – influence on collagen hydration. J. Phys. D Appl. Phys. 50(28), 285401 (2017)

    Article  Google Scholar 

  12. A.Y. Sdobnov, M.E. Darvin, J. Lademann, V.V. Tuchin, A comparative study of ex vivo skin optical clearing using two-photon microscopy. J. Biophotonics 10(9), 1115–1123 (2017)

    Article  Google Scholar 

  13. A.Y. Sdobnov, M.E. Darvin, J. Schleusener, J. Lademann, V.V. Tuchin, Hydrogen bound water profiles in the skin influenced by optical clearing molecular agents-quantitative analysis using confocal Raman microscopy. J. Biophotonics 12(5), e201800283 (2019)

    Article  Google Scholar 

  14. A.Y. Sdobnov, M.E. Darvin, E.A. Genina, A.N. Bashkatov, J. Lademan, V.V. Tuchin, Recent progress in tissue optical clearing for spectroscopic application. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 197, 216–229 (2018)

    Article  ADS  Google Scholar 

  15. A.Y. Sdobnov, J. Lademann, M.E. Darvin, V.V. Tuchin, Methods for optical skin clearing in molecular optical imaging in dermatology. Biochem. 84(S1), 144–158 (2019)

    Google Scholar 

  16. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography. Science 254, 1178–1181 (1991)

    Article  ADS  Google Scholar 

  17. A.F. Fercher, K. Mengedoht, W. Werner, Eye-length measurement by interferometry with partially coherent light. Opt. Lett. 13(3), 186–188 (1988)

    Article  ADS  Google Scholar 

  18. W. Drexler, J. G. Fujimoto (eds.), Optical Coherence Tomography: Technology and Applications, 2nd edn. (Springer International Publishing Switzerland, Cham, 2015)

    Google Scholar 

  19. V.V. Tuchin, Tissue Optics – Light Scattering Methods and Instruments for Medical Diagnostics, 3rd edn. (SPIE Press, Bellingham, WA, 2015)

    Book  Google Scholar 

  20. https://en.wikipedia.org/wiki/Optical_coherence_tomography. Accessed 25 Jul 2019

  21. A.F. Fercher, Optical coherence tomography. J. Biomed. Opt. 1, 157–173 (1996)

    Article  ADS  Google Scholar 

  22. E.A. Genina, A.N. Bashkatov, M.D. Kozintseva, V.V. Tuchin, OCT study of optical clearing of muscle tissue in vitro with 40% glucose solution. Opt. Spect. 120(1), 27–35 (2016)

    Article  ADS  Google Scholar 

  23. Y.M. Liew, R.A. McLaughlin, F.M. Wood, D.D. Sampson, Reduction of image artifacts in three-dimensional optical coherence tomography of skin in vivo. J. Biomed. Opt. 16(11), 116018 (2011)

    Article  ADS  Google Scholar 

  24. E.A. Genina, A.N. Bashkatov, Y.P. Sinichkin, I.Y. Yanina, V.V. Tuchin, Optical clearing of biological tissues: prospects of application in medical diagnostics and phototherapy. J. Biomed. Phot. Eng. 1(1), 22–58 (2015)

    Article  Google Scholar 

  25. R.K. Wang, V.V. Tuchin, Optical coherence tomography. Light scattering and imaging enhancement, Chapter 16, in Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental Monitoring, and Material Science, ed. by V. V. Tuchin, vol. 2, 2nd edn., (Springer, New York, NY, 2013), p. 665

    Chapter  Google Scholar 

  26. A.N. Bashkatov, E.A. Genina, V.I. Kochubey, V.V. Tuchin, Optical properties of human sclera in spectral range 370-2500 nm. Opt. Spectr. 109(2), 197–204 (2010)

    Article  ADS  Google Scholar 

  27. A.N. Bashkatov, E.A. Genina, V.I. Kochubey, V.V. Tuchin, Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005)

    Article  ADS  Google Scholar 

  28. A.N. Bashkatov, E.A. Genina, M.D. Kozintseva, V.I. Kochubey, S.Y. Gorofkov, V.V. Tuchin, Optical properties of peritoneal biological tissues in the spectral range of 350-2500 nm. Opt. Spectr. 120(1), 1–8 (2016)

    Article  ADS  Google Scholar 

  29. I. Carneiro, S. Carvalho, R. Henrique, L.M. Oliveira, V.V. Tuchin, Optical properties of colorectal muscle in visible/NIR range, in Biophotonics: Photonic Solutions for Better Health Care VI, ed. by J. Popp, V.V. Tuchin, F.S. Pavone. Proc. SPIE 10685, 106853D (2018)

    Google Scholar 

  30. A.N. Bashkatov, E.A. Genina, V.V. Tuchin, Optical properties of skin, subcutaneous and muscle tissues: a review. J. Innov. Opt. Health Sci. 4(1), 9–38 (2011)

    Article  Google Scholar 

  31. M.G. Ghosn, V.V. Tuchin, K.V. Larin, Nondestructive quantification of analyte diffusion in cornea and sclera using optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 48(6), 2726–2733 (2007)

    Article  Google Scholar 

  32. A.N. Bashkatov, E.A. Genina, V.V. Tuchin, Measurement of glucose diffusion coefficients in human tissues, Chapter 19, in Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, ed. by V. V. Tuchin, (Taylor & Francis Group LLC, CRC Press, Boca Raton, FL, 2009), pp. 587–621

    Google Scholar 

  33. M.G. Ghosn, E.F. Carbajal, N.A. Befrui, V.V. Tuchin, K.V. Larin, Differential permeability rate and percent clearing of glucose in different regions in rabbit sclera. J. Biomed. Opt. 13(2), 021110 (2008)

    Article  ADS  Google Scholar 

  34. X. Guo, G. Wu, H. Wei, X. Deng, H. Yang, Y. Ji, Y. He, Z. Guo, S. Xie, H. Zhong, Q. Zhao, Z. Zhu, Quantification of glucose diffusion in human lung tissues by using Fourier domain optical coherence tomography. Potochem. Photobiol. 88, 311–316 (2012)

    Article  Google Scholar 

  35. K.V. Larin, M.G. Ghosn, A.N. Bashkatov, E.A. Genina, N.A. Trunina, V.V. Tuchin, Optical clearing for OCT image enhancement and in-depth monitoring of molecular diffusion. IEEE J. Sel. Top. Quant. Elect. 18(3), 1244–1259 (2012)

    Article  ADS  Google Scholar 

  36. R. Wang, V.V. Tuchin, Enhance light penetration in tissue for high resolution optical imaging techniques by the use of biocompatible chemical agents. J. X ray Sci. Tech. 10, 167–176 (2002)

    Google Scholar 

  37. R.K. Wang, J.B. Elder, Propylene glycol as a contrasting agent for optical coherence tomography to image gastrointestinal tissues. Lasers Surg. Med. 30, 201–208 (2002)

    Article  Google Scholar 

  38. L. Pires, V. Demidov, I.A. Vitkin, V. Bagnato, C. Kurachi, B.C. Wilson, Optical clearing of melanoma in vivo: characterization by diffuse reflectance spectroscopy and optical coherence tomography. J. Biomed. Opt. 21(8), 081210 (2016)

    Article  ADS  Google Scholar 

  39. Z. Zhu, G. Wu, H. Wei, H. Yang, Y. He, S. Xie, Q. Zhao, X. Guo, Investigation of the permeability and optical clearing ability of different analytes in human normal and cancerous breast tissues by spectral domain OCT. J. Biophotonics 5(7), 536–543 (2012)

    Article  Google Scholar 

  40. H. Xiong, Z. Guo, C. Zeng, L. Wang, Y. He, S. Liu, Application off hyperosmotic agent to determine gastric cancer with optical coherence tomography ex vivo in mice. J. Biomed. Opt. 14(2), 024029 (2009)

    Article  ADS  Google Scholar 

  41. H.Q. Zhong, Z.Y. Guo, H.J. Wei, J.L. Si, L. Guo, Q.L. Zhao, C.C. Zheng, H.L. Xiong, Y.H. He, S.H. Liu, Enhancement of permeability of glycerol with ultrasound in human normal and cancer breast tissues in vitro using optical coherence tomography. Laser Phys. Lett. 7(5), 388–395 (2010)

    Article  ADS  Google Scholar 

  42. E.A. Genina, A.N. Bashkatov, O.V. Semyachkina-Glushkovskaya, V.V. Tuchin, Optical clearing of cranial bone by multicomponent immersion solutions and cerebral venous blood flow visualization. Izv. Saratov Univ. (N. S.), Ser. Phys. 17, 98–110 (2017)

    Google Scholar 

  43. H. Zhong, Z. Guo, H. Wei, L. Uo, C. Wang, Y. He, H. Xiong, S. Liu, Synergistic effect of ultrasound and thiazone-PEG 400 on human skin optical clearing in vivo. Photochem. Photobiol. 86, 732–737 (2010)

    Article  Google Scholar 

  44. E.A. Genina, A.N. Bashkatov, E.A. Kolesnikova, M.V. Basko, G.S. Terentyuk, V.V. Tuchin, Optical coherence tomography monitoring of enhanced skin optical clearing in rats in vivo. J. Biomed. Opt. 19(2), 021109 (2014)

    Article  ADS  Google Scholar 

  45. W. Feng, R. Shi, N. Ma, D.K. Tuchina, V.V. Tuchin, D. Zhu, Skin optical clearing potential of disaccharides. J. Biomed. Opt. 21(8), 081207 (2016)

    Article  ADS  Google Scholar 

  46. L. Guo, R. Shi, C. Zhang, D. Zhu, Z. Ding, P. Li, Optical coherence tomography angiography offers comprehensive evaluation of skin optical clearing in vivo by quantifying optical properties and blood flow imaging simultaneously. J. Biomed. Opt. 21(8), 081202 (2016)

    Article  ADS  Google Scholar 

  47. N.S. Ksenofontova, E.A. Genina, A.N. Bashkatov, G.S. Terentyuk, V.V. Tuchin, OCT study of skin optical clearing with preliminary laser ablation of epidermis. J. Biomed. Phot. Eng. 3(2), 020307 (2017)

    Article  Google Scholar 

  48. O. Zhernovaya, V.V. Tuchin, M.J. Leahy, Enhancement of OCT imaging by blood optical clearing in vessels – a feasibility study. Photon. Lasers Med. 5(2), 151–159 (2016)

    Article  Google Scholar 

  49. A. Bykov, T. Hautala, M. Kinnunen, A. Popov, S. Karhula, S. Saarakkala, M.T. Nieminen, V.V. Tuchin, I. Meglinski, Imaging of subchondral bone by optical coherence tomography upon optical clearing of articular cartilage. J. Biophotonics 9(3), 270–275 (2016)

    Article  Google Scholar 

  50. C.H. Liu, M. Singh, J. Li, Z. Han, C. Wu, S. Wang, R. Idugboe, R. Raghunathan, E.N. Sobol, V.V. Tuchin, M. Twa, K.V. Larin, Quantitative assessment of hyaline cartilage elasticity during optical clearing using optical coherence elastography. Med. Technol. Med 7, 44–51 (2015)

    Google Scholar 

  51. A.F. Peña, A. Doronin, V.V. Tuchin, I. Meglinski, Monitoring of interaction of low-frequency electric field with biological tissues upon optical clearing with optical coherence tomography. J. Biomed. Opt. 19(8), 086002 (2014)

    Article  ADS  Google Scholar 

  52. https://en.wikipedia.org/wiki/Fluorescence_microscope. Accessed 25 Jul 2019

  53. I.V. Meglinski, A.N. Bashkatov, E.A. Genina, D.Y. Churmakov, V.V. Tuchin, The enhancement of confocal images of tissues at bulk optical immersion. Laser Phys. 13(1), 65–69 (2003)

    Google Scholar 

  54. I.V. Meglinski, A.N. Bashkatov, E.A. Genina, D.Y. Churmakov, V.V. Tuchin, Study of the possibility of increasing the probing depth by the method of reflection confocal microscopy upon immersion clearing of near-surface human skin layers. Quant. Elect. 32(10), 875–882 (2002)

    Article  ADS  Google Scholar 

  55. R. Dickie, R.M. Bachoo, M.A. Rupnick, S.M. Dallabrida, G.M. Deloid, J. Lai, R.A. DePinho, R.A. Rogers, Three-dimensional visualization of microvessel architecture of whole-mount tissue by confocal microscopy. Microvasc. Res. 72, 20–26 (2006)

    Article  Google Scholar 

  56. A.-S. Chiang, Y.-C. Liu, S.-L. Chiu, S.-H. Hu, C.-Y. Huang, C.-H. Hsieh, Three-dimensional mapping of brain neuropils in the cockroach Diploptera punctate. J. Comp. Neurol. 440, 1–11 (2001)

    Article  Google Scholar 

  57. A.J. Moy, B.V. Capulong, R.B. Saager, M.P. Wiersma, P.C. Lo, A.J. Durkin, B. Choi, Optical properties of mouse brain tissue after optical clearing with FocusClear. J. Biomed. Opt. 20(9), 095010 (2015)

    Article  ADS  Google Scholar 

  58. Y.-Y. Fu, C.-W. Lin, G. Enikolopov, E. Sibley, A.-S. Chiang, S.-C. Tang, Microtome-free 3-dimensional confocal imaging method for visualization of mouse intestine with subcellular-level resolution. Gastroenterology 137, 453–465 (2009)

    Article  Google Scholar 

  59. Y. Aoyagi, R. Kawakami, H. Osanai, T. Hibi, T. Nemoto, A rapid optical clearing protocol using 2,2′-thiodiethanol for microscopic observation of fixed mouse brain. PLoS One 10(1), e0116280 (2015)

    Article  Google Scholar 

  60. I. Costantini, J.-P. Ghobril, A.P. Di Giovanna, A.L.A. Mascaro, L. Silvestri, M.C. Müllenbroich, L. Onofri, V. Conti, F. Vanzi, L. Sacconi, R. Guerrini, H. Markram, G. Lannelo, F.S. Pavone, A versatile clearing agent for multi-modal brain imaging. Sci. Rep. 5, 9808 (2015)

    Article  Google Scholar 

  61. J. Hasegawa, Y. Sakamoto, S. Nakagami, M. Aida, S. Sawa, S. Matsunaga, Three-dimensional imaging of plant organs using a simple and rapid transparency technique. Plant Cell Physiol. 57(3), 462–472 (2016)

    Article  Google Scholar 

  62. T.J. Musielak, D. Slane, C. Liebig, M. Bayer, A versatile optical clearing protocol for deep tissue imaging of fluorescent proteins in Arabidopsis thaliana. PLoS One 11(8), e0161107 (2016)

    Article  Google Scholar 

  63. W. Li, R.N. Germain, M.Y. Gerner, Multiplex, quantitative cellular analysis in large tissue volumes with clearing-enhanced 3D microscopy (Ce3D). Proc. Natl. Sci. Acad. U S A 114(35), E7321–E7330 (2017)

    Article  Google Scholar 

  64. Online supporting information appendix to reference 64. https://www.pnas.org/content/pnas/suppl/2017/08/08/1708981114.DCSupplemental/pnas.1708981114.sapp.pdf. Accessed 5 Apr 2019

  65. R. Samatham, K.G. Phillips, S.L. Jacques, Assessment of optical clearing agents using reflectance-mode confocal scanning laser microscopy. J. Innov. Opt. Health Sci. 3, 183–188 (2010)

    Article  Google Scholar 

  66. C.P. Neu, T. Novak, K.F. Gilliland, P. Marshall, S. Calve, Optical clearing in collagen- and proteoglycan-rich osteochondral tissues. Osteoarthr. Cartil. 23, 405–413 (2015)

    Article  Google Scholar 

  67. M. Pende, K. Becker, M. Wanis, S. Saghafi, R. Kaur, C. Hahn, N. Pende, M. Foroughipour, T. Hummel, H.-U. Dodt, High-resolution ultramicroscopy of the developing and adult nervous system in optically cleared Drosophila melanogaster. Nat. Commun. 9, 4731 (2018)

    Article  ADS  Google Scholar 

  68. H. Hama, H. Hioki, K. Namiki, T. Hoshida, H. Kurokawa, F. Ishidate, T. Kaneko, T. Akagi, T. Saito, T. Saido, A. Miyawaki, ScaleS: an optical clearing palette for biological imaging. Nat. Neurosci. 18(10), 1518–1529 (2015)

    Article  Google Scholar 

  69. L. Liu, A. Liu, W. Xiao, R. Li, X. Hu, L. Chen, Volumetric fluorescence imaging combined with modified optical clearing Alzheimer’s disease pathology, in 2018 Asia Communications and Photonics Conference (ACP), Hangzhou, (IEEE, New York, NY, 2018), pp. 1–3. https://doi.org/10.1109/ACP.2018.8596080

    Chapter  Google Scholar 

  70. A.F. Fercher, J.D. Briers, Flow visualization by means of single-exposure speckle photography. Opt. Commun. 37(5), 326–330 (1981)

    Article  ADS  Google Scholar 

  71. J.D. Briers, Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging. Physiol. Meas. 22, 35–66 (2001)

    Article  Google Scholar 

  72. A.K. Dunn, H. Bolay, M.A. Moskowitz, D.A. Boas, Dynamic imaging of cerebral blood flow using laser speckle. J. Cereb. Blood Flow Metab. 21, 195–201 (2001)

    Article  Google Scholar 

  73. A.K. Dunn, Laser speckle contrast imaging of cerebral blood flow. Ann. Biomed. Eng. 40, 367–377 (2012)

    Article  Google Scholar 

  74. D. Briers, D.D. Duncan, E. Hirst, S.J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, O.B. Thompson, Laser speckle contrast imaging: theoretical and practical limitations. J. Biomed. Opt. 18(6), 066018 (2013)

    Article  ADS  Google Scholar 

  75. I. Sigal, R. Gad, A.M. Caravaca-Aguirre, Y. Atchia, D.B. Conkey, R. Piestun, O. Levi, Laser speckle contrast imaging with extended depth of field for in-vivo tissue imaging. Biomed. Opt. Express 5(1), 123–135 (2014)

    Article  Google Scholar 

  76. A.N. Bashkatov, K.V. Berezin, K.N. Dvoretskiy, M.L. Chernavina, E.A. Genina, V.D. Genin, V.I. Kochubey, E.N. Lazareva, A.B. Pravdin, M.E. Shvachkina, P.A. Timoshina, D.K. Tuchina, D.D. Yakovlev, D.A. Yakovlev, I.Y. Yanina, O.S. Zhernovaya, V.V. Tuchin, Measurement of tissue optical properties in the context of tissue optical clearing. J. Biomed. Opt. 23(9), 091416 (2018)

    Article  ADS  Google Scholar 

  77. J. Wang, D. Zhu, Switchable skin window induced by optical clearing method for dermal blood flow imaging. J. Biomed. Opt. 18(6), 061209 (2013)

    Article  ADS  Google Scholar 

  78. Q. Luo, C. Jiang, P. Li, H. Cheng, Z. Wang, Z. Wang, V.V. Tuchin, Laser speckle imaging of cerebral blood flow, Chapter 5, in Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental Monitoring and Material Science, ed. by V. V. Tuchin, vol. 1, 2nd edn., (Springer, New York, NY, 2013), pp. 167–212

    Chapter  Google Scholar 

  79. E.I. Galanzha, V.V. Tuchin, A.V. Solovieva, T.V. Stepanova, Q. Luo, H. Cheng, Skin backreflectance and microvascular system functioning at the action of osmotic agents. J. Phys. D Appl. Phys. 36, 1739–1746 (2003)

    Article  ADS  Google Scholar 

  80. D. Zhu, J. Zhang, H. Cui, Z. Mao, P. Li, Q. Luo, Short-term and long-term effects of optical clearing agents on blood vessels in chick chorioallantoic membrane. J. Biomed. Opt. 13(2), 021106 (2008)

    Article  ADS  Google Scholar 

  81. D. Zhu, J. Wang, Z. Zhi, X. Wen, Q. Luo, Imaging dermal blood flow through the intact rat skin with an optical clearing method. J. Biomed. Opt. 15(2), 026008 (2010)

    Article  ADS  Google Scholar 

  82. R. Shi, M. Chen, V.V. Tuchin, D. Zhu, Accessing to arteriovenous blood flow dynamics response using combined laser speckle contrast imaging and skin optical clearing. Biomed. Opt. Express 6(6), 1977–1989 (2015)

    Article  Google Scholar 

  83. Z. Mao, X. Wen, J. Wang, D. Zhu, The biocompatibility of the dermal injection of glycerol in vivo to achieve optical clearing. Proc. SPIE 7519, 75191N (2009)

    Article  ADS  Google Scholar 

  84. W. Feng, R. Shi, C. Zhang, S. Liu, T. Yu, D. Zhu, Visualization of skin microvascular dysfunction of type 1 diabetic mice using in vivo skin optical clearing method. J. Biomed. Opt. 24(3), 031003 (2019)

    ADS  Google Scholar 

  85. J. Wang, Y. Zhang, T.H. Xu, Q.M. Luo, D. Zhu, An innovative transparent cranial window based on skull optical clearing. Laser Phys. Lett. 9(6), 469–473 (2012)

    Article  ADS  Google Scholar 

  86. P.A. Timoshina, A.B. Bucharskaya, D.A. Alexandrov, V.V. Tuchin, Study of blood microcirculation of pancreas in rats with alloxan diabetes by laser speckle contrast imaging. J. Biomed. Phot. Eng. 3(2), 020301 (2017)

    Article  Google Scholar 

  87. P.A. Timoshina, E.M. Zinchenko, D.K. Tuchina, M.M. Sagatova, O.V. Semyachkina-Glushkovskaya, V.V. Tuchin, Laser speckle contrast imaging of cerebral blood flow of newborn mice at optical clearing. Proc. SPIE 10336, 1033610 (2017)

    Article  Google Scholar 

  88. P.A. Timoshina, A.B. Bucharskaya, N.A. Navolokin, V.V. Tuchin, Speckle-contrast imaging of pathological tissue microhemodynamics at optical clearing, in Dynamics and Fluctuations in Biomedical Photonics XVI. Proc. SPIE 10877, 108770Z (2019). https://doi.org/10.1117/12.2508794

    Article  Google Scholar 

  89. D. Abookasis, T. Moshe, Feasibility study of hidden flow imaging based on laser speckle technique using multiperspectives contrast images. Opt. Lasers Eng. 62, 38–45 (2014)

    Article  Google Scholar 

  90. D. Abookasis, T. Moshe, Reconstruction enhancement of hidden objects using multiple speckle contrast projections and optical clearing agents. Opt. Commun. 400, 58–64 (2013)

    Article  ADS  Google Scholar 

  91. T. Moshe, M.A. Firer, D. Abookasis, Object reconstruction in scattering medium using multiple elliptical polarized speckle contrast projections and optical clearing agents. Opt. Lasers Eng. 68, 172–179 (2015)

    Article  Google Scholar 

  92. J. Wang, N. Ma, R. Shi, Y. Zhang, T. Yu, D. Zhu, Sugar-induced skin optical clearing: from molecular dynamics simulation to experimental demonstration. IEEE J Sel. Top. Quant. Elect. 20(2), 7101007 (2014)

    Google Scholar 

  93. I. Freund, M. Deutsch, Second-harmonic microscopy of biological tissue. Opt. Lett. 11(2), 94–96 (1986)

    Article  ADS  Google Scholar 

  94. P.J. Campagnola, C.Y. Dong, Second harmonic generation microscopy: principles and applications to disease diagnosis. Laser Phot. Rev. 5(1), 13–26 (2011)

    Article  ADS  Google Scholar 

  95. P. Campagnola, H.A. Clark, W.A. Mohler, A. Lewis, L.M. Loew, Second-harmonic imaging microscopy of living cells. J. Biomed. Opt. 6(3), 277–286 (2001)

    Article  ADS  Google Scholar 

  96. X. Chen, O. Nadiarynkh, S. Plotnikov, P.J. Campagnola, Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat. Protoc. 7(4), 654–669 (2012)

    Article  Google Scholar 

  97. O. Nadiarnykh, P.J. Campagnola, SHG and optical clearing, in Second Harmonic Generation Imaging, ed. by F. S. Pavone, P. J. Campagnola, (CRC Press, Boca Raton, FL, 2014), pp. 169–189

    Google Scholar 

  98. R. LaComb, O. Nadiarnykh, S. Carey, P.J. Campagnola, Quantitative second harmonic generation imaging and modeling of the optical clearing mechanism in striated muscle and tendon. J. Biomed. Opt. 13(2), 021109 (2008)

    Article  ADS  Google Scholar 

  99. A.T. Yeh, B. Choi, J.S. Nelson, B.J. Tromberg, Reversible dissociation of collagen in tissues. J. Invest. Dermatol. 121, 1332–1335 (2003)

    Article  Google Scholar 

  100. N.G. Khlebtsov, I.L. Maksimova, V.V. Tuchin, L. Wang, Introduction to light scattering by biological objects, Chapter 1, in Handbook of Optical Biomedical Diagnosis, ed. by V. V. Tuchin, vol. PM107, (SPIE Press, Bellingham, WA, 2002), pp. 31–167

    Google Scholar 

  101. T. Yasui, Y. Tohno, T. Araki, Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry. J. Biomed. Opt. 9(2), 259–264 (2004)

    Article  ADS  Google Scholar 

  102. S. Plotnikov, V. Juneja, A.B. Isaacson, W.A. Mohler, P.J. Campagnola, Optical clearing for improved contrast in second harmonic generation imaging of skeletal muscle. Biophys. J. 90, 328–339 (2006)

    Article  ADS  Google Scholar 

  103. A. Milgroom, E. Ralston, Clearing skeletal muscle with CLARITY for light microscopy imaging. Cell Biol. Int. 40(4), 478–483 (2016)

    Article  Google Scholar 

  104. E. Olson, M.J. Levene, R. Torres, Multiphoton microscopy with clearing for three dimensional histology of kidney biopsies. Biomed. Opt. Express 7(8), 3089–3096 (2016)

    Article  Google Scholar 

  105. L. Richardson, G. Vargas, T. Brown, L. Ochoa, J. Trivedi, M. Kacerovský, M. Lappas, R. Menon, Redefining 3Dimensional placental membrane microarchitecture using multiphoton microscopy and optical clearing. Placenta 53, 66–75 (2017)

    Article  Google Scholar 

  106. L.F. Ochoa, A. Kholodnykh, P. Villarreal, B. Tian, R. Pal, A.N. Freiberg, A.R. Brasier, M. Motamedi, G. Vargas, Imaging of murine whole lung fibrosis by large Scale 3D microscopy aided by tissue optical clearing. Sci. Rep. 8, 13348 (2018)

    Article  ADS  Google Scholar 

  107. C. Zhang, W. Feng, Y. Zhao, T. Yu, P. Li, T. Xu, Q. Luo, D. Zhu, A large, switchable optical clearing skull window for cerebrovascular imaging. Theranostics 8(10), 2696–2708 (2018)

    Article  Google Scholar 

  108. D. Jing, S. Zhang, W. Luo, X. Gao, Y. Men, C. Ma, X. Liu, Y. Yi, A. Budge, B.O. Zhou, Z. Zhao, Q. Yuan, J.Q. Feng, L. Gao, W.-P. Ge, H. Zhao, Tissue clearing of both hard and soft tissue organs with the PEGASOS method. Cell Res. 2(8), 803–818 (2018)

    Article  Google Scholar 

  109. E.A. Susaki, H.R. Ueda, Whole-body and whole-organ clearing and imaging techniques with single-cell resolution: toward organism-level systems biology in mammals. Cell Chem. Biol. 23(1), 137–157 (2016)

    Article  Google Scholar 

  110. P.J. Keller, M.B. Ahrens, Visualizing whole-brain activity and development at the single-cell level using light-sheet microscopy. Neuron 85(3), 462–483 (2015)

    Article  Google Scholar 

  111. P.J. Keller, H.-U. Dodt, Light sheet microscopy of living or cleared specimens. Curr. Opin. Neurobiol. 22(1), 138–143 (2012)

    Article  Google Scholar 

  112. P. Osten, T.W. Margrie, Mapping brain circuitry with a light microscope. Nat. Methods 10, 515–523 (2013)

    Article  Google Scholar 

  113. R. Tomer, L. Ye, B. Hsueh, K. Deisseroth, Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat. Protoc. 9, 1682–1697 (2014)

    Article  Google Scholar 

  114. J.M. Girkin, M.T. Carvalho, The light-sheet revolution. J. Opt. 20, 053002 (2018)

    Article  ADS  Google Scholar 

  115. A.H. Voie, D.H. Burns, F.A. Spelman, Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens. J. Microsc. 170(3), 229–236 (1993)

    Article  Google Scholar 

  116. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, E.H.K. Stelzer, Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305(5686), 1007–1009 (2004)

    Article  ADS  Google Scholar 

  117. The first commercial ultramicroscope. http://lavisionbiotec.com/2010.html. Accessed 21 Mar 2019

  118. P.A. Santi, Light sheet fluorescence microscopy: a review. J. Histochem. Cytochem. 59(2), 129–138 (2011)

    Article  Google Scholar 

  119. L. Silvestri, A. Bria, L. Sacconi, G. Iannello, F.S. Pavone, Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain. Opt. Express 20(18), 20582–20598 (2012)

    Article  ADS  Google Scholar 

  120. B. Lloyd-Lewis, F.M. Davis, O.B. Harris, J.R. Hitchcock, F.C. Lourenço, M. Pasche, C.J. Watson, Imaging the mammary gland and mammary tumours in 3D: optical tissue clearing and immunofluorescence methods. Breast Cancer Res. 18(1), 127 (2016)

    Article  Google Scholar 

  121. A. Greenbaum, K.Y. Chan, T. Dobreva, D. Brown, D.H. Balani, R. Boyce, H.M. Kronenberg, H.J. McBride, V. Gradinaru, Bone CLARITY: clearing, imaging, and computational analysis of osteoprogenitors within intact bone marrow. Sci. Transl. Med. 9(387), eaah6518 (2017)

    Article  Google Scholar 

  122. J.N. Singh, T.M. Nowlin, G.J. Seedorf, S.H. Abman, D.P. Shepherd, Quantifying three-dimensional rodent retina vascular development using optical tissue clearing and light-sheet microscopy. J. Biomed. Opt. 22(7), 076011 (2017)

    Article  ADS  Google Scholar 

  123. Y. Henning, C. Osadnik, E.P. Malkemper, EyeCi: optical clearing and imaging of immunolabeled mouse eyes using light-sheet microscopy. Exp. Eye Res. 180, 137–145 (2019)

    Article  Google Scholar 

  124. A.P. Di Giovanna, A. Tibo, L. Silvestri, M.C. Müllenbroich, I. Costantini, A.L. Mascaro, L. Sacconi, P. Frasconi, F.S. Pavone, Whole-brain vasculature reconstruction at the single capilary level. Sci. Rep. 8, 12573 (2018)

    Article  ADS  Google Scholar 

  125. M.C. Müllenbroich, L. Silvestri, A.P. Di Giovanna, G. Mazzamuto, I. Costantini, L. Sacconi, F.S. Pavone, High-fidelity imaging in brain-wide structural studies using light-sheet microscopy. eNeuro 5(6), ENEURO.0124-18.2018 (2018)

    Article  Google Scholar 

  126. N. Renier, E.L. Adams, C. Kirst, Z. Wu, R. Azevedo, J. Kohl, A.E. Autry, L. Kadiri, K.U. Venkataraju, Y. Zhou, V.X. Wang, C.Y. Tang, O. Olsen, C. Dulac, P. Osten, M. Tessier-Lavigne, Mapping of brain activity by automated volume analysis of immediate early genes. Cell 165, 1789–1802 (2016)

    Article  Google Scholar 

  127. M.D. Rocha, D.N. Düring, P. Bethge, F.F. Voigt, S. Hildebrand, F. Helmchen, A. Pfeifer, R.H.R. Hahnloser, M. Gahr, Tissue clearing and light-sheet microscopy: imaging the unsectioned adult zebra finch brain at cellular resolution. Front. Neuroanat. 13, 13 (2019)

    Article  Google Scholar 

  128. J. Bürgers, I. Pavlova, J.E. Rodriguez-Gatica, C. Henneberger, M. Oeller, J.A. Ruland, J.P. Siebrasse, U. Kubitscheck, M.K. Schwarz, Light-sheet fluorescence expansion microscopy: fast mapping of neural circuits at super resolution. Neurophotonics 6(1), 015005 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oliveira, L.M.C., Tuchin, V.V. (2019). Optical Clearing and Tissue Imaging. In: The Optical Clearing Method. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-33055-2_7

Download citation

Publish with us

Policies and ethics