Skip to main content

Controlling the Optical Properties of Biological Materials

  • Chapter
  • First Online:
The Optical Clearing Method

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

Abstract

To overcome the high light-scattering problem that occurs in biological tissues, we present in this chapter the different clearing methods known today. Most of these methods have benefits and downsides, depending on the application for which they are used. The optical immersion method is introduced as a better, reliable, and reversible way to turn tissues clear. The major benefits and advantages of this method such as its reversibility, the lack of side effects, and application in large wavelength range will be presented. A description of the molecular diffusion of optical clearing agents is given to explain the reduction in the refractive index mismatch that natural tissues have.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.-U. Dodt, U. Leischner, A. Schierloh, N. Järling, C.P. Mauch, K. Deininger, J.M. Deussing, M. Eder, W. Zieglgänsberger, K. Becker, Ultramicroscopy: three dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods 4(4), 331–336 (2007)

    Article  Google Scholar 

  2. A.Y. Sdobnov, M.E. Darvin, E.A. Genina, A.N. Bashkatov, J. Lademann, V.V. Tuchin, Recent progress in tissue clearing for spectroscopic application. Spectrochim. Acta A Mol. Biomol. Spectrosc. 197, 216–229 (2018)

    Article  ADS  Google Scholar 

  3. A. Malpica, M. Follen, Near real time confocal microscopy of amelanotic tissue: dynamics of aceto-whitening enable nuclear segmentation. Opt. Express 6(2), 40–48 (2000)

    Article  ADS  Google Scholar 

  4. R.A. Drezek, T. Collier, C.K. Brookner, A. Malpica, R. Lotan, R.R. Richards-Kortum, M. Follen, Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid. Am. J. Obstet. Gynecol. 182(5), 1135–1139 (2000)

    Article  Google Scholar 

  5. B. Pogue, H.B. Kaufman, A. Zelenchuk, W. Harper, G.C. Burke, E.E. Burke, D.M. Harper, Analysis of acetic-induced whitening of high-grade squamous intraepithelial lesions. J. Biomed. Opt. 6(4), 397–403 (2001)

    Article  ADS  Google Scholar 

  6. C.J. Balas, G.C. Themelis, E.P. Prokopakis, I. Orfanudaki, E. Koumantakis, E. Helidonis, In vivo detection and staging of epithelial dysplasias and malignancies based on the quantitative assessment of acetic acid-tissue interaction kinetics. J. Photochem. Photobiol. B Biol. 53(1–3), 153–157 (1999)

    Article  Google Scholar 

  7. G. Longcroft-Wheaton, P. Bhandari, Acetowhitening as a novel diagnostic tool for the diagnosis and characterisation of neoplasia within Barrett’s oesophagus. Gut 61, A258 (2012)

    Google Scholar 

  8. K. Gutiérrez-Fragoso, H.G. Acosta-Mesa, N. Cruz-Ramírez, R. Hernández-Jiménez, Automatic classification of acetowhite temporal patterns to identify precursor lesions of cervical cancer. J. Phys. Conf. Ser. 475(1), 012004-1–012004-10 (2013)

    Google Scholar 

  9. T.T. Wu, J.Y. Qu, Assessment of the relative contribution of cellular components to the acetowhitening effect in cell cultures and suspensions using elastic light-scattering spectroscopy. Appl. Opt. 46(21), 4834–4842 (2007)

    Article  ADS  Google Scholar 

  10. V.V. Tuchin, Optical Clearing of Tissues and Blood (SPIE Press, Bellingham, 2006)

    Google Scholar 

  11. J. Lin, S. The, W. Zheng, Z. Huang, Multimodal nonlinear optical microscopic imaging provides new insights into acetowhitening mechanisms in live mammalian cells without labeling. Biomed. Opt. Express 5(9), 3116–3122 (2014)

    Article  Google Scholar 

  12. O. Marina, A. Trujillo, C. Sanders, K. Burnett, J.P. Freyer, J.R. Mourant, The effect of acetic acid on mammalian cells, in Biomedical Optics and 3-D Imaging, OSA Technical Digest (CD), (Optical Society of America, Washington, DC, 2010), p. BSuD74

    Chapter  Google Scholar 

  13. R. Drezek, A. Dunn, R. Richards-Kortum, Light scattering from cells: finite-difference time-domain simulations and goniometric measurements. Appl. Opt. 38(16), 3651–3661 (1999)

    Article  ADS  Google Scholar 

  14. A.J. Welch, M.J.C. van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue, 2nd edn. (Springer, Dordrecht, 2011)

    Book  Google Scholar 

  15. E.D. Jansen, T.G. van Leeuwen, M. Motamedi, C. Borst, A.J. Welch, Temperature dependence of the absorption coefficient of water for midinfrared laser radiation. Laser Surg. Med. 14(3), 258–268 (1994)

    Article  Google Scholar 

  16. B.I. Lange, T. Brendel, G. Hüttmann, Temperature dependence of light absorption in water at holmium and thulium laser wavelengths. Appl. Opt. 41(27), 5797–5803 (2002)

    Article  ADS  Google Scholar 

  17. L. Cordone, A. Cupane, M. Leone, E. Vitrano, Optical absorption spectra of deoxy- and oxyhemoglobin in the temperature range 300–320 K. Biophys. Chem. 24(3), 259–275 (1986)

    Article  Google Scholar 

  18. P.L. San Biagio, E. Vitrano, A. Cupane, F. Madonia, M.U. Palma, Temperature induced difference spectra of oxy- and deoxy-hemoglobin in the near IR, visible and Soret regions. Biochem. Biophys. Res. Commun. 77(4), 1158–1165 (1977)

    Article  Google Scholar 

  19. J.M. Steinke, A.P. Sheperd, Effects of temperature on optical absorbance spectra of oxy-, carboxy- and deoxy-hemoglobin. Clin. Chem. 38(7), 1360–1364 (1992)

    Google Scholar 

  20. R. Sfareni, A. Boffi, V. Quaresima, M. Ferrari, Near infrared absorption spectra of human deoxy- and oxyhemoglobin in the temperature range 20–40 degrees C. Biochim. Biophys. Acta 1340(2), 165–169 (1997)

    Article  Google Scholar 

  21. K. Gray, E.F. Slade, The temperature dependence of the optical absorption spectra of some methaemoglobin derivatives. Biochem. Biophys. Res. Commun. 48(4), 1019–1024 (1972)

    Article  Google Scholar 

  22. J.F. Black, N. Wade, J.K. Barton, Mechanistic comparison of blood undergoing laser photocoagulation at 532 and 1064 nm. Lasers Surg. Med. 36(2), 155–165 (2005)

    Article  Google Scholar 

  23. J.F. Black, J.K. Barton, Chemical and structural changes in blood undergoing laser photocoagulation. Photochem. Photobiol. 80(1), 89–97 (2004)

    Article  Google Scholar 

  24. A. Kienle, R.A. Hibst, New optimal wavelength for treatment of port wine stains? Phys. Med. Biol. 40(10), 1559–1576 (1995)

    Article  Google Scholar 

  25. W. Jia, B. Choi, W. Franco, J. Lotfi, B. Majaron, G. Aguilar, J.S. Nelson, Treatment of cutaneous vascular lesions using multiple-intermittent cryogen spurts and two-wavelength laser pulses: numerical and animal studies. Laser Surg. Med. 39(6), 494–503 (2007)

    Article  Google Scholar 

  26. I.F. Cilesiz, A.J. Welch, Light dosimetry: effects of dehydration and thermal damage on the optical properties of the human aorta. Appl. Opt. 32(4), 477–487 (1993)

    Article  ADS  Google Scholar 

  27. S. Jaywant, B. Wilson, M. Patterson, L. Lilge, T. Flotte, J. Woolsey, C. McCulloch, Temperature dependent changes in the optical absorption and scattering spectra of tissues: correlation with ultrastructure. Proc. SPIE 1882, 218–229 (1993)

    Article  ADS  Google Scholar 

  28. L. Oliveira, M.I. Carvalho, E. Nogueira, V.V. Tuchin, Skeletal muscle dispersion (400–1000 nm) and kinetics at optical clearing. J. Biophotonics 11(1), e201700094 (2018)

    Article  Google Scholar 

  29. H.S. Dhadwal, R.R. Ansari, M.A. DellaVecchia, Coherent fiber optic sensor for early detection of caractogenesis in the human eye lens. Opt. Eng. 32(2), 233–238 (1993)

    Article  ADS  Google Scholar 

  30. B. Grzegorzewski, S. Yermolenko, Speckle in far-field produced by fluctuations associated with phase separation. Proc. SPIE 2647, 343–349 (1995)

    Article  ADS  Google Scholar 

  31. B. Choi, T.E. Milner, J. Kim, J.N. Goodman, G. Vargas, G. Ahuilar, J.S. Nelson, Use of optical coherence tomography to monitor biological tissue during cryosurgery. J. Biomed. Opt. 9(2), 282–286 (2004)

    Article  ADS  Google Scholar 

  32. V.V. Tuchin, Tissue Optics – Light Scattering Methods and Instruments for Medical Diagnosis, 3rd edn. (SPIE Press, Bellingham, 2015)

    Book  Google Scholar 

  33. P.O. Rol, Optics for Transscleral Laser Applications, Dissertation for the degree of Doctor of Natural Sciences, N9655, Swiss Federal Institute of Technology, Zurich (1992), p. 152

    Google Scholar 

  34. E.K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, A.J. Welch, Effects of compression on soft tissue optical properties. IEEE J. Select. Top. Quant. Electron. 2(4), 943–950 (1996)

    Article  ADS  Google Scholar 

  35. A.A. Gurjarpadhye, W.C. Vogt, Y. Liu, C.G. Rylander, Effect of localized mechanical indentation on skin water evaluated using OCT. Int. J. Biomed. Imag. 2011, 817250-1–817250-8 (2011)

    Article  Google Scholar 

  36. M.Y. Kirillin, P.D. Agrba, V.A. Kamensky, In vivo study of the effect of mechanical compression on formation of OCT images of human skin. J. Biophotonics 3(12), 752–758 (2010)

    Article  Google Scholar 

  37. W. Spalteholz, Über das Durchsichtigmachen von menschlichen und tierichen Präparaten und seine theoretischen Bedingungen, nebst Anhang: Über Knochenfärbung (S. Hirzel, Leipzig, 1911)

    Google Scholar 

  38. W. Spalteholz, Über das Durchsichtigmachen von menschlichen und tierichen Präparaten und seine theoretischen Bedingungen, nebst Anhang: Über Knochenfärbung (S. Hirzel, Leipzig, 1914)

    Google Scholar 

  39. D.S. Richardson, J.W. Lichtman, Clarifying tissue clearing. Cell 162(2), 246–257 (2015)

    Article  Google Scholar 

  40. A. Azaripour, T. Lagerweij, C. Scharfbillig, A.E. Jadczak, B. Willershausen, C.J.F. van Noorden, A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue. Prog. Histochem. Cytochem. 51, 9–23 (2016)

    Article  Google Scholar 

  41. E.A. Genina, A.N. Bashkatov, Y.P. Sinichkin, I.Y. Yanina, V.V. Tuchin, Optical clearing of biological tissues: prospects of application in medical diagnosis and phototherapy. J. Biomed. Photon. Eng. 1(1), 22–58 (2015)

    Article  Google Scholar 

  42. D. Zhu, K.V. Larin, Q. Luo, V.V. Tuchin, Recent progress in tissue optical clearing. Laser Photon. Rev. 7(5), 732–757 (2013)

    Article  ADS  Google Scholar 

  43. M.S.C. Kauhanen, A.M. Salmi, E.K. Von Boguslawsky, I.V.V. Leivo, S.L. Asko-Seljavaara, Muscle fiber diameter and muscle type distribution following free microvascular muscle transfers: a prospective study. Microsurgery 18(2), 137–144 (1998)

    Article  Google Scholar 

  44. W.L. Bragg, A.B. Pippard, The form birefringence of macromolecules. Acta Cryst. 6, 865–867 (1953)

    Article  Google Scholar 

  45. L. Oliveira, A. Lage, M. Pais Clemente, V.V. Tuchin, Optical characterization and composition of abdominal wall muscle from rat. Opt. Laser. Eng. 47(6), 667–672 (2009)

    Article  Google Scholar 

  46. V.V. Tuchin, I.L. Maksimova, D.A. Zimnyakov, I.L. Kon, A.H. Mavlutov, A.A. Mishin, Light propagation in tissues with controlled optical properties. J. Biomed. Opt. 2(4), 401–417 (1997)

    Article  ADS  Google Scholar 

  47. V. Tuchin, I. Maksimova, D. Zimnyakov, I. Kon, A. Mavlutov, A. Mishin, Light propagation in tissues with controlled optical properties. Proc. SPIE 2925, 118–132 (1996)

    Article  ADS  Google Scholar 

  48. A. Kotyk, K. Janacek, Membrane Transport: An Interdisciplinary Approach (Plenum Press, New York, 1997)

    Google Scholar 

  49. A.N. Bashkatov, E.A. Genina, V.V. Tuchin, Measurement of glucose diffusion coefficients in human tissues, Chapter 19, in Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, ed. by V. V. Tuchin, (Taylor & Francis Group LLC, CRC Press, London, 2009), pp. 87–621

    Google Scholar 

  50. A.N. Bashkatov, E.A. Genina, Y.P. Sinichkin, V.I. Kochubey, N.A. Lakodina, V.V. Tuchin, Glucose and mannitol diffusion in human dura mater. Biophys. J. 85(5), 3310–3318 (2003)

    Article  ADS  Google Scholar 

  51. L.M. Oliveira, M.I. Carvalho, E.M. Nogueira, V.V. Tuchin, The characteristic time of glucose diffusion measured for muscle tissue at optical clearing. Laser Phys. 23(7), 075606-1–075606-6 (2013)

    Article  ADS  Google Scholar 

  52. L.M. Oliveira, M.I. Carvalho, E.M. Nogueira, V.V. Tuchin, Diffusion characteristics of ethylene glycol in skeletal muscle. J. Biomed. Opt. 20(5), 051019-1–051019-10 (2015)

    Article  ADS  Google Scholar 

  53. L.M. Oliveira, M.I. Carvalho, E.M. Nogueira, V.V. Tuchin, Optical clearing mechanisms characterization in muscle. J. Innov. Opt. Health Sci. 9(5), 1650035-1–1650035-19 (2016)

    Article  Google Scholar 

  54. S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L.M. Oliveira, V.V. Tuchin, Glucose diffusion in colorectal mucosa – a comparative study between normal and cancer tissues. J. Biomed. Opt. 22(9), 091506-1–091506-12 (2017)

    Article  ADS  Google Scholar 

  55. D.J. Tomlinson, Temperature dependent self-diffusion coefficient measurements of glycerol by pulsed N.M.R. technique. Mol. Phys. 25(3), 735–738 (1972)

    Article  ADS  Google Scholar 

  56. F. Mallamace, C. Corsaro, D. Mallamace, E. Vasi, C. Vasi, H.E. Stanley, Some considerations on the transport properties of water-glycerol suspensions. J. Chem. Phys. 144, 014501 (2016)

    Article  ADS  MATH  Google Scholar 

  57. M.A. Araújo, E.C. Ferreira, A.M. Cunha, M. Mota, Determination of diffusion coefficients of glycerol and glucose from starch based thermoplastic compounds on stimulated physiological solution. J. Mater. Sci. Mater. Med. 16(3), 239–246 (2005)

    Article  Google Scholar 

  58. G. Ternström, A. Sjöstrand, G. Aly, Å. Jernqvist, Mutual diffusion coefficients of water + ethylene glycol and water + glycerol mixtures. J. Chem. Eng. Data 41(4), 876–879 (1996)

    Article  Google Scholar 

  59. A.L. Weber, Kinetics of organic transformations under mild aqueous conditions: implications for the origin of life and its metabolism. Orig. Life Evol. Biosph. 34(5), 473–495 (2004)

    Article  ADS  Google Scholar 

  60. G. D’Errico, O. Ortona, F. Capuano, V. Vitagliano, Diffusion coefficients for the binary system glycerol + water at 25°C. A velocity correlation study. J. Chem. Data 49, 1665–1670 (2004)

    Article  Google Scholar 

  61. J.H. Kim, M.J. Jang, J. Choi, E. Lee, K.D. Song, J. Cho, K.T. Kim, H.J. Cha, W. Sun, Optimizing tissue-clearing conditions based on analysis of the critical factors affecting tissue clearing procedures. Sci. Rep. 8(1), 12815 (2018)

    Article  ADS  Google Scholar 

  62. D.W. Leonard, K.M. Meek, Refractive indices of the collagen fibrils and extrafibrillar material of the corneal stroma. Biophys. J. 72(3), 1382–1387 (1997)

    Article  ADS  Google Scholar 

  63. K.M. Meek, S. Dennis, S. Khan, Changes in the refractive index of the stroma and its extrafibrillar matrix when the cornea swells. Biophys. J. 85(4), 2205–2212 (2003)

    Article  Google Scholar 

  64. K.M. Meek, D.W. Leonard, C.J. Connon, S. Dennis, S. Khan, Transparency, swelling and scarring in the corneal stroma. Eye 17(8), 927–936 (2003)

    Article  Google Scholar 

  65. O. Zhernovaya, O. Sydoruk, V. Tuchin, A. Douplik, The refractive index of human hemoglobin in the visible range. Phys. Med. Biol. 56(13), 4013–4021 (2011)

    Article  Google Scholar 

  66. R. Graaff, J.G. Aarnoudse, J.R. Zijp, P.M.A. Sloot, F.F.M. De Mul, J. Greve, M.H. Koelink, Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations. Appl. Opt. 31(10), 1370–1376 (1992)

    Article  ADS  Google Scholar 

  67. H. Liu, B. Beauvoit, M. Kimura, B. Chance, Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity. J. Biomed. Opt. 1(2), 200–211 (1996)

    Article  ADS  Google Scholar 

  68. I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, V.V. Tuchin, Water content and scatterers dispersion evaluation in colorectal tissues. J. Biomed. Photon. Eng. 3(4), 040301-1–040301-10 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oliveira, L.M.C., Tuchin, V.V. (2019). Controlling the Optical Properties of Biological Materials. In: The Optical Clearing Method. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-33055-2_2

Download citation

Publish with us

Policies and ethics