Skip to main content

Abstract

As the global population has been predicted to reach 9 billion by 2050, there is a need to meet the growing demand for food. The current food production needs to be doubled in size by finding more sustainable food production methods and other sources of nutrition. Edible insects are been investigated to offer a potential solution to this problem. The consumption of insects is now of public interest mainly because of its availability and cheap sources of nutrition. With further work on research, edible insects might become an important and alternative source of food, oil, protein, and bioactive components for human consumption and industrial utilization in the nearest future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeboye O, Fasogbon BM, Adegbuyi KO (2019) Formulation of a nutritive vegetable soup powder enriched with termite. In: Abstract proceedings of the 5th regional food science and technology summit, NSPRI, Ilorin, pp 430

    Google Scholar 

  • Ademolu KO, Idowu AB, Olatunde GO (2010) Nutritional value assessment of variegated grasshopper, Zonocerus variegatus (L.) (Acridoidea: Pygomorphidae), during post-embryonic development. Afr Ent 18:360–364

    Article  Google Scholar 

  • Adepoju OT, Omotayo OA (2014) Nutrient Composition and Potential Contribution of Winged Termites (Marcrotermes bellicosus Smeathman) to Micronutrient Intake of Consumers in Nigeria. British J Appl Sci Technol 4(7):1149–1158

    Article  Google Scholar 

  • Agbidye FS, Ofuya TI, Akindele SO (2009) Marketability and nutritional qualities of some edible forest insects in Benue State, Nigeria. Pak J Nutr 8:917–922

    Article  Google Scholar 

  • Anand H, Ganguly A, Haldar P (2008) Potential value of Acridids as high protein supplement for poultry feed. Int J Poult Sci 7:722–725

    Article  CAS  Google Scholar 

  • Anankware JP, Osekre EA, Obeng-Ofori D, Khamala CM (2016) Identification and classification of common edible insects in Ghana. Int J Ent Res 1(5):33–39

    Google Scholar 

  • Aniebo A, Owen O (2010) Effects of age and method of drying on the proximate composition of housefly larvae (Musca domestica Linnaeus) meal (HFLM). Pak J Nutr 9:485–487

    Article  CAS  Google Scholar 

  • Anvo M, Toguyen A, Otchoumou A (2016) Nutritional qualities of edible caterpillars Cirinabutyrospermi in southwestern of Burkina Faso. Int J Innov Appl Stud 18:639

    Google Scholar 

  • Ayieko MA, Oriamo V, Nyambuga IA (2010) Processed products of termites and lake flies: improving entomophagy for food security within the Lake Victoria region. Afri J Food Agric Nutr Dev 10(2):2085–2098

    Google Scholar 

  • Ayieko MA, Kinyuru JN, Ndong’a MF, Kenji GM (2012) Nutritional value and consumption of black ants (Carebaravidua Smith) from the Lake Victoria region in Kenya. Adv J Food Sci Technol 41:39–45

    Google Scholar 

  • Banjo AD, Lawal OA, Owolana OA, Olubanjo OA, Ashidi JS, Dedeke GA, Owa DA, Sobowale OA (2003) An ethno-zoological survey of insects and their allies among the remos (Ogun State) South Western Nigeria. Indilinga: Afr J Indigenous Knowl Syst 2(1):61–68

    Google Scholar 

  • Banjo AD, Lawal OA, Songonuga EA (2006) The nutritional value of fourteen species of edible insects in southwestern Nigeria. Afr J Biotechnol 5(3):298–301

    CAS  Google Scholar 

  • Belluco S, Losasso C, Maggioletti M (2013) Edible insects in a food safety and nutritional perspective: a critical review. Comp Rev Food Sci Food Saf 12:296–313

    Article  CAS  Google Scholar 

  • Bukkens SGF (2005) Insects in the human diet: nutritional aspects. In: Paoletti MG (ed) Ecological implications of mini livestock, role of rodents, frogs, snails, and insects for sustainable development. Science Publishers, New Hampshire, pp 545–577

    Google Scholar 

  • Calder PC (2017) Omega-3: the good oil. Nutr Bull 42(2):132–140. https://doi.org/10.1111/nbu.12261

    Article  Google Scholar 

  • Capinera JL (2004) Encyclopedia of entomology. Kluwer Academic Publishers, Dordrecht. ISBN:0-7923-8670-1

    Google Scholar 

  • Chakravarthy AK, Jayasimha GT, Rachana RR, Rohini G (2016) Insects as human food. In: Chakravarthy A, Sridhara S (eds) Economic and ecological significance of arthropods in diversified ecosystems. Springer, Singapore, pp 133–146. https://doi.org/10.1007/978-981-10-1524-3_7

    Chapter  Google Scholar 

  • Chavunduka DM (1975) Insects as a Source of Protein to the Africa. Rhodesia Sci News 9:217–220

    Google Scholar 

  • Chen XM, Feng Y, Zhang H (2008) Review of the nutritive value of edible insects. In: Durst PB, Johnson DV, Leslie RN, Shono K (eds) Forest insects as food: humans bite back. RAP Publication, Chiang Mai, pp 85–92

    Google Scholar 

  • Chen X, Feng Y, Chen Z (2009) Common edible insects and their utilization in China. Entomol Res 39(5):299–303

    Article  Google Scholar 

  • Chung AYC (2010) Edible insects and entomophagy in Borneo. In: Durst PB, Johnson DV, Leslie RN, Shono K (eds) Forest insects as food: humans bite back. Proceedings of a workshop on Asia-Pacific resources and their potential for development, Chiang Mai, Thailand, pp 141–150

    Google Scholar 

  • Cito A, Botta M, Francardi V, Dreassi E (2017) Insects as source of angiotensin converting enzyme inhibitory peptides. J Insects Food Feed 3:231–240

    Article  Google Scholar 

  • DeFoliart GR (1997) An overview of the role of edible insects in preserving biodiversity. Ecol Food Nut 36(2–4):109–132

    Article  Google Scholar 

  • DeFoliart G (1999) Insects as food: why the Western attitude is important. Annu Rev Entomol 44:21–50

    Article  CAS  PubMed  Google Scholar 

  • Deng ZB, Yang W, Yang CP et al (2013). Nutrition analysis and evaluation from wasps. Acta Nutrimenta Sinica 35(5):514–515

    Google Scholar 

  • Durst PB, Johnson DV, Leslie RL, Shono K (2010) Forest insects as food: humans bite back, proceedings of a workshop on Asia-Pacific resources and their potential for development. FAO, Regional Office for Asia and the Pacific, Bangkok, pp 1–64

    Google Scholar 

  • Dutta P, Dey T, Manna P, Kalita J, Dewanjee S, (2016) Antioxidant potential of Vespa affinis L., a traditional edible insect species of North East India. PLoS One 11(5):e0156107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edijala J, Egbogbo O, Anigboro A (2009) Proximate composition and cholesterolconcentrations of Rhynchophorusphoenicis and Oryctesmonoceros larvae subjected todifferent heat treatments. Afr J Biotechnol 8:2346–2348

    CAS  Google Scholar 

  • Egan BA, Toms R, Minter L, Olivier PA (2014) Nutritional significance of the edible insect, Hemijanavariegata Rothschild (Lepidoptera: Eupterotidae) of the Blouberg region, Limpopo, South Africa. Afr Entomol 22:15–23

    Article  Google Scholar 

  • Ekpo KE, Onigbinde AO, Asia IO (2009) Pharmaceutical potentials of the oils of somepopular insects consumed in southern Nigeria. Afr J Pharm Pharmacol 3:51–57

    CAS  Google Scholar 

  • El Hassan NM, Hamed SY, Hassan AB, Eltayeb MM, Babiker EE (2008) Nutritional evaluation and physiochemical properties of boiled and fried tree locust. Pak J Nutr 7:325–329

    Article  CAS  Google Scholar 

  • Elvin CM, Carr AG, Huson MG, Maxwell JM, Pearson RD, Vuocolo T, Liyou NE, Wong DCC, Meritt DJ, Dixon NE (2005) Synthesis and properties of crosslinked recombinant proresilin. Nature 437:999–1002. https://doi.org/10.1038/nature04085.

    Article  CAS  PubMed  Google Scholar 

  • FAO (2009) The state of food and agriculture: livestock in the balance. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • FAO (2012) Assessing the potential of insects as food and feed in assuring food security. Food and Agriculture Organization of the United Nations (FAO), Summary Report, Rome, Italy, vol 1, pp 1–38

    Google Scholar 

  • FAO (2013) Edible insects: future prospects for food and feed security. Forestry paper no. 171. Food and Agriculture Organization of the United Nations, (FAO), Rome, Italy

    Google Scholar 

  • Finke MD, Oonincx D (2014) Insects as food for insectivores. In: Morales-Ramos JA, Rojas MG, Shapiro-Ilan DI (eds) Mass production of beneficial organisms. Elsevier, Amsterdam, pp 583–616

    Chapter  Google Scholar 

  • Finke MD, Defoliart G, Benevenga NJ (1989) Use of a four-parameter logistic model to evaluate the quality of the protein from three insect species when fed to rats. J Nutr 119:864–871

    Article  CAS  PubMed  Google Scholar 

  • Gokoglu N, Yerlikaya P, Cengiz E (2004) Effects of cooking methods on the proximate composition and mineral contents of rainbow trout (Oncorhynchus mykiss). Food Chem 84:19–22

    Article  CAS  Google Scholar 

  • Goodman WG (1989) Chitin: a magic bullet? Food Insects Newslett 2(3):1, 6–7

    Google Scholar 

  • Gordon DG (1998) The eat-a-bug cookbook. Ten Speed Press, Berkeley, CA, p 103

    Google Scholar 

  • Halloran A, Vantomme P (2013) The contribution of insects to food security, livelihoods and the environment. FAO, Rome

    Google Scholar 

  • Halloran A, Roos N, Flore R, Hanboonsong Y (2016) The development of the edible cricket industry in Thailand. J Insect Food Feed 2(2):91–100. https://doi.org/10.3920/JIFF2015.0091

    Article  Google Scholar 

  • Hwangbo J, Hong EC, Jang A, Kang HK, Oh JS, Kim BW, Park BS (2009) Utilization of house fly-maggots, a feed supplement in the production of broiler chickens. J Environ Biol 30(4):609–614

    CAS  PubMed  Google Scholar 

  • Islam SB, Bezbaruah S, Kalita J (2016) A review on antimicrobial peptides from Bombyxmori L and their application in plant and animal disease control. J Adv Bio Biotechnol 9(3):2394–1081. https://doi.org/10.9734/JABB/2016/27539

    Article  Google Scholar 

  • Johnson DV (2010) Proceedings of a workshop on resources and their potential for development. FAO Regional Office for Asia and the Pacific, Bangkok, pp 5–22

    Google Scholar 

  • Kelemu S, Niassy S, Torto B, Fiaboe K, Affognon H, Tonnang H, Maniania NK, Ekesi S (2015) African edible insects for food and feed: inventory, diversity, commonalitiesand contribution to food security. J Insects Food Feed 1:103–119

    Article  Google Scholar 

  • Kinsella J (1976) Functional properties of food proteins: a review. Crit Rev Food Sci Nutr 7:219–280

    Article  CAS  Google Scholar 

  • Kinyuru JN, Kenji GM, Njoroge MS (2009) Process development, nutrition and sensory qualities of wheat buns enriched with edible termites (Macrotermessubhylanus) from Lake Victoria region, Kenya. Afr J Food Agric Nutr Dev 9:1739–1750

    CAS  Google Scholar 

  • Kinyuru JN, Kenji GM, Muhoho SN (2010) Nutritional potential of longhorn grasshopper (Ruspoliadifferens) consumed in Siaya District, Kenya. J Agric Sci Technol 12(1):1–24

    Google Scholar 

  • Kinyuru JN, Konyole S, Roos N, Onyango C, Owino V, Owuor B, Estambale B, Friis H, Aagaard-Hansen J, Kenji G (2013) Nutrient composition of four species of winged termites consumed in Western Kenya. J Food Comp Anal 30(2):120–124

    Article  CAS  Google Scholar 

  • Kinyuru JN, Konyole SO, Onyango-Omolo SA, Kenji GM, Onyango CA, Owino VO, Roos N (2015) Nutrients, functional properties, storage stability and costing of complementary foods enriched with either termites and fish or commercial micronutrients. J Insects Food Feed 1(2):149–158

    Article  Google Scholar 

  • Kipkoech C, Kinyuru JN, Samuel I, Nanna R (2017) Use of house cricket to address food security in Kenya: Nutrient and chitin composition of farmed crickets as influenced by age. Afr J Agric Res 12(44):3189–3197

    Google Scholar 

  • Li ZR, Liu J, Wang CK, Zhou Q (2010) Effect of Periplanetaamericana on meat quality traits of broilers. Fujian J Agric Sci 25:14–17

    Google Scholar 

  • Liu GQ, Wei MC (2002) The review on functional factors in insects and exploitation prospect of functional food. Food Sci Technol 27:21–25

    Google Scholar 

  • Madibela OR, Seitiso TK, Thema TF, Letso M (2007) Effect of traditional processing methods on chemical composition and in vitro true dry matter digestibility of the Mophane worm (Imbrasia belina). J Arid Environ 68(3):492–500

    Article  Google Scholar 

  • Madibela O, Mokwena K, Nsoso S, Thema T (2009) Chemical composition of Mopaneworm sampled at three sites in Botswana and subjected to different processing. Trop Anim Health Prod 41:935–942

    Article  CAS  PubMed  Google Scholar 

  • Makkar HP, Tran G, Heuzé V, Ankers P (2014) State-of-the-art on use of insects as animal feed. Anim Feed Sci Technol 197:1–33

    Article  CAS  Google Scholar 

  • Mariod AA (2013) Insect oil and protein: biochemistry, food and other uses: review. Agric Sci 4:76–80

    CAS  Google Scholar 

  • Mariod AA, Matthaus B, Eichner K (2004) Fatty acid, tocopherol and sterol composition as well asoxidative stability of three unusual Sudanese oils. J Food Lipids 11:179–189

    Article  CAS  Google Scholar 

  • Mariod A, Matthäus B, Eichner K, Hussein IH (2005) Improving the oxidative stability of sunflower oil by blending with Sclerocarya birrea and Aspongopu sviduatus oils. J Food Lipids 1(2):150–158

    Article  Google Scholar 

  • Michaelsen KF, Hoppe C, Roos N, Kaestel P, Stougaard M, Lauritzen L, Mølgaard C (2009) Choice of foods and ingredients for moderately malnourished children 6 months to 5 years of age. Food Nutr Bull 30(3):343–404

    Article  Google Scholar 

  • Mmari MW, Kinyuru JN, Laswai HS, Okoth JK (2017) Traditions, beliefs and indigenous technologies in connection with the edible longhorn grasshopper Ruspolia differens (Serville 1838) in Tanzania. J Ethnobiol Ethnomed 13:60. https://doi.org/10.1186/s13002-017-0191-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Münke-Svendsen C, Kinyuru J, Ayieko M, Makkar H (2016) Technical brief #1: insects as food and feed in Kenya – past, current and future perspectives. GREEiNSECT - insect for green economy. https://www.researchgate.net/publication/295918503

  • Mustafa NEM, Mariod AA, Matthäus B (2008) Antibacterial activity of the Aspongopus viduatus (melon bug) oil. J Food Safety 28:577–586

    Article  CAS  Google Scholar 

  • Musundire R, Zvidzai CJ, Chidewe C, Samende BK, Manditsera FA (2014a) Nutrient and anti-nutrient composition of Henicuswhellani (Orthoptera: Stenopelmatidae), an edible ground cricket, in south-eastern Zimbabwe. Int J Trop Insect Sci 34:223–231

    Article  Google Scholar 

  • Musundire R, Zvidzai CJ, Chidewe C (2014b) Bio-active compounds composition in edible stinkbugs consumed in South-Eastern districts of Zimbabwe. Int J Biol 6:36–45

    Article  CAS  Google Scholar 

  • Musundire R, Osuga I, Cheseto X, Irungu J, Torto B (2016a) Aflatoxin contamination detected in nutrient and anti-oxidant rich edible stinkbug stored in recycled grain containers. PLoS One 11:1–16

    Article  Google Scholar 

  • Musundire R, Zvidzai CJ, Chidewe C, Ngadze RT, Macheka L, Manditsera FA, Mubaiwa J, Masheka A (2016b) Nutritional and bioactive compounds composition of Eulepida mashona, an edible beetle in Zimbabwe. J Insects Food Feed 2:179–187

    Article  Google Scholar 

  • Muzzarelli RAA (2010) Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers. Mar Drugs 8(2):292–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen P, Kim KY, Kim AY, Kim NS, Kweon HY (2016) Increased health span and resistance to Parkinson’s disease in Drosophila by boiled and freeze-dried mature silk worm larval powder. J Asia Pac Entomol 19:551–561

    Article  Google Scholar 

  • Nonaka K (1996) Ethnoentomology of the central Kalahari san. African Study Monographs 22:29–46

    Google Scholar 

  • Nongonierma AB, FitzGerald RJ (2017) Unlocking the biological potential of proteins from edible insects through enzymatic hydrolysis: A review. Innovative Food Sci Emerg Technol 43:239–252

    Article  CAS  Google Scholar 

  • Nowak V, Persijn D, Rittenschober D, Charrondiere UR (2016) Review of food composition data for edible insects. Food Chem 193:39–46

    Article  CAS  PubMed  Google Scholar 

  • OECD-FAO (2018) In: Chapter 6 Meat agricultural outlook 2018-2027, Paris, pp 150. http://www.fao.org/3/i9166e/i9166e_Chapter6_Meat.pdf

  • Okaraonye CC, Ikewuchi JC (2008) Rhynchophorus phoenicis (F) larva meal: nutritional value and health implications. J Biol Sci 8:1221–1225

    Article  CAS  Google Scholar 

  • Oliveira JFS, Passos de Carvalho J, Bruno de Sousa RFX, Madalena Simão M (1976) The nutritional value of four species of insects consumed in Angola. Ecol Food Nutr 5(2):91–97

    Article  Google Scholar 

  • Omotoso OT (2006) Nutritional quality, functional properties and anti-nutrient compositions of the larva of Cirina forda (Westwood) (Lepidoptera: Saturniidae). J Zhejiang Univ Sci B 7(1):51–55

    Article  CAS  PubMed  Google Scholar 

  • Onyeike EN, Ayalogu EO, Okaraonye CC (2005) Nutritive value of the larvae of raphia palm beetle (Oryctes rhinoceros) and weevil (Rhynchophorus phoenicis). J Sci Food Agric 85:1822–1828

    Article  CAS  Google Scholar 

  • Osasona AI, Olaofe O (2010) Nutritional and functional properties of Cirina forda larva from Ado-Ekiti, Nigeria. Afr J Food Sci 4:775–777

    CAS  Google Scholar 

  • Pal P, Roy S (2014) Edible insects: future of human food - a review. Int Lett Nat Sci 21:1–11

    Google Scholar 

  • Pambo KO, Okello JJ, Mbeche R and Kinyuru JN (2016) Consumer acceptance of edible insects for non-meat protein in Western Kenya. In: Paper prepared for presentation at the 5th African Association of Agricultural Economists (AAAE) conference at the United Nations conference center, Addis Ababa-Ethiopia, 23–26 Sept 2016.

    Google Scholar 

  • Payne CLR, Itterbeeck JV (2018) Ecosystem services from edible insects in agricultural systems: a review. Insects 8:24. https://doi.org/10.3390/insects8010024

    Article  Google Scholar 

  • Ramos-Elorduy JB (2008) Energy supplied by edible insects from Mexico and their nutritional and ecological importance. Ecol Food Nutr 47(3)

    Article  Google Scholar 

  • Ramos-Elorduy J, Moreno J, Prado E (1997) Nutritional value of edible insects from the state of Oaxaca, Mexico. J Food Comp Anal 10:142–157

    Article  CAS  Google Scholar 

  • Ramos-Elorduy J, Gonzalez E, Hernandez A (2002) Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. J Econ Entomol 95:214–220

    Article  PubMed  Google Scholar 

  • Ratcliffe NA, Mello CB, Garcia ES, Butt TM, Azambuja P (2011) Insect natural products and processes: new treatments for human disease. Insect Biochem Mol Biol 41(10):747–769

    Article  CAS  PubMed  Google Scholar 

  • Ratcliffe N, Azambuja P, Mello CB (2014) Recent advances in developing insect natural products as potential modern day medicines. J Evid Based Complement Alternat Med 2014:904958

    Article  Google Scholar 

  • Raubenheimer D, Rothman JM (2013) Nutritional ecology of entomophagy in humans and other primates. Annu Rev Entomol 58(1):141–160. https://doi.org/10.1146/annurev-ento-120710-100713. PMID:23039342

    Article  CAS  PubMed  Google Scholar 

  • Roos N, van Huis A (2017) Consuming insects: are there health benefits? J Insects Food Feed 3(4):225–229

    Article  Google Scholar 

  • Rumpold BA, Schlüter OK (2013a) Potential and challenges of insects as an innovative source for food and feed production. Inn Food Sci Emerg Technol 17:1–11. https://doi.org/10.1016/j.ifset.2012.11.005

    Article  CAS  Google Scholar 

  • Rumpold BA, Schlüter OK (2013b) Nutritional composition and safety aspects of edible insects. Mol Nut Food Res 57(3):802–823

    Article  CAS  Google Scholar 

  • Rumpold BA, Fröhling A, Reineke K, Knorr D, Boguslawski S, Ehlbeck J, Schlüter O (2014) Comparison of volumetric and surface decontamination techniques for innovative processing of mealworm larvae (Tenebrio molitor). Innovative Food Sci Emerg Technol 26:232–241

    Article  Google Scholar 

  • Ryu KS, Lee HS, Kim IS (2002) Effects and mechanisms of silkworm powder as a blood glucose-lowering agent. Int J Indust Entomol 4:93–100

    Google Scholar 

  • Schabel HG (2010) Forest insects as food: a global review. In: Durst PB, Johnson DV, Leslie RN, Shono K (eds) Forest insects as food: humans bite back. FAO, Bangkok, Thailand, pp 37–64

    Google Scholar 

  • Seo M, Goo TW, Chung M, Baek M, Hwang JS, Kim MA, Yun EY (2017) Tenebrio molitor larvae inhibit adipogenesis through AMPK and MAPKs signaling in 3t3-l1 adipocytes and obesity in high-fat diet-induced obese mice. Int J Mol Sci 18:518

    Article  PubMed Central  CAS  Google Scholar 

  • Shadung KG, Mphosi MS, Mashela PW (2012) Influence of drying method and location on amino acids and mineral elements of Sternocera orissa Buguet 1836 (Coleoptera: Buprestidae) in South Africa. Afr J Agric Res 7:6130–6135

    Article  Google Scholar 

  • Sirimungkararat S, Saksirirat W, Nopparat T, Natongkham A (2010) Edible products from eri and mulberry silkworms in Thailand. In: Durst PB, Johnson DV, Leslie RL, Shono K (eds) Forest insects as food: humans bite back, proceedings of a workshop on Asia-Pacific resources and their potential for development. FAO, Regional Office for Asia and the Pacific, Bangkok, pp 189–200

    Google Scholar 

  • Smith R, Pryor R (2013) Work Package 5: Pro-Insect Platform in Europe. http://www.proteinsect.eu/fileadmin/user_upload/deliverables/D5.1t-FINAL.pdf

  • Soares JW, Mello CM (2004) Antimicrobial peptides: a review of how peptide structure impacts antimicrobial activity. Proc SPIE 5271:20

    Article  CAS  Google Scholar 

  • Srivastava JK, Gupta S (2009) Health promoting benefits of chamomile in the elderly population. In: Watson RR (ed), Complementary and alternative therapies in the aging population. Elsevier Inc, Academic Press

    Chapter  Google Scholar 

  • Srivastava SK, Babu N, Pandey H (2009) Traditional insect bioprospecting-as human food and medicine. Indian J Trad Knowl 8:485–494

    Google Scholar 

  • Tango M (1994) Insect as human food. Food Insects Newslett 7(3):3–4

    Google Scholar 

  • Tao J, Li YO (2018) Edible insects as a means to address global malnutrition and food insecurity issues. Food Quality Saf 2:17–26. https://doi.org/10.1093/fqsafe/fyy001

    Article  CAS  Google Scholar 

  • Teffo LS (2006) Nutritional and medicinal value of the edible stinkbug, EncosternumdelegorgueiSpinola consumed in the Limpopo Province of South Africa and its host plant DodoneaeviscosaJacq. var. angustifolia. Doctoral Thesis, University of Pretoria, South Africa

    Google Scholar 

  • van Huis A (2003) Insects as Food in sub-Saharan Africa. Int J Trop Insect Sci 23(03):163–185

    Google Scholar 

  • van Huis A (2016) Edible insects are the future? Proc Nutr Soc 75(03):294–305. https://doi.org/10.1017/S0029665116000069

    Article  PubMed  Google Scholar 

  • van Huis A, van Gurp H, Dicke M (2012) Het insectenvkookboek. Atlas, Amsterdam, the Netherlands

    Google Scholar 

  • van Huis A, Van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G, Vantomme P (2013) Edible insects future prospects for food and feed security. FAO Forestry, paper 171

    Google Scholar 

  • Vantomme P, Göhler D, N’Deckere-Ziangba F (2004) Contribution of forest insects to food security and forest conservation: the example of caterpillars in Central Africa. Odi Wildlife Policy Briefing, 3:1–4

    Google Scholar 

  • Wang D, Zhang Q, Zhai SW (2006) Advances in the application of insect protein, chitosan and fatty acids to animal nutrition and feed. J Northwest Forestry Univ 21:135–138

    CAS  Google Scholar 

  • Wang W, Shen S, Chen Q, Tanga B, He G, Ruan H, Das UN (2008) Hydrolyzates of silkworm pupae (Bombyxmori) protein is a new source of angiotensin I-converting enzyme inhibitory peptides. Curr Pharm Biotechnol 9:307–314

    Article  CAS  PubMed  Google Scholar 

  • Williams JP, Williams JR, Kirabo A, Chester D, Peterson M (2016) Nutrient content and health benefits of insects. Chapter 3. In: Insects as sustainable food ingredients, pp 61–84. https://doi.org/10.1016/B978-0-12-802856-8.00003-X

    Chapter  Google Scholar 

  • Womeni HM, Tiencheu B, Linder M, Nabayo EMC, Tenyang N, Mbiapo P, Villeneuve P, Fanni J, Panmentier M (2012) Nutritional value and effect of cooking, drying and storage process on some functional properties of Rhynchophorus phoenicis. Int J Life Sci Pharm Rev 2:203–219

    CAS  Google Scholar 

  • Xiaoming C, Ying F, Hong Z, Zhiyong C. (2010) Review of the nutritive value of edible insects. In Durst PB, Johnson DV, Leslie RL, Shono K (eds) Forest insects as food: humans bite insect physiology and ecology250 back, proceedings of a workshop on Asia-Pacific resources and their potential for development. FAO Regional Office for Asia and the Pacific, Bangkok

    Google Scholar 

  • Yen AL (2010) Edible insects and other invertebrates in Australia: future prospects. In P.B. Durst, D.V. Johnson, R.L. Leslie. & K. Shono, eds. Forest insects as food: humans bite back, proceedings of a workshop on Asia-Pacific resources and their potential for development. Bangkok, FAO Regional Office for Asia and the Pacific, Bangkok, pp 65–84

    Google Scholar 

  • Yen AL (2015) Insects as food and feed in the Asia Pacific region: current perspectives and future directions. J Insects Food Feed 1(1):33–55

    Article  Google Scholar 

  • Zhou Q, Li ZR, Liu J, Lin Q, Wang CK, Jiang X (2009) Effect of Periplaneta americana meal on immunity and antioxidation of broliers. J Fujian Agric Forestry Univ 38:175–180

    Google Scholar 

  • ZieliÅ„ska E, KaraÅ› M, Jakubczyk A (2017) Antioxidant activity of predigested protein obtained from a range of farmed edible insects. Int J Food Sci Technol 52(2):306–312

    Article  CAS  Google Scholar 

  • ZieliÅ„ska E, KaraÅ› M, Jakubczyk A, ZieliÅ„ski D, Baraniak B (2019) Edible insects as source of proteins. In: Mérillon JM, Ramawat KG (eds) Bioactive molecules in food, Reference series in phytochemistry. Cham, Springer Nature, pp 389–441. https://doi.org/10.1007/978-3-319-78030-6_67

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fasogbon, B.M. (2020). Interdisciplinary Uses of Some Edible Species. In: Adam Mariod, A. (eds) African Edible Insects As Alternative Source of Food, Oil, Protein and Bioactive Components. Springer, Cham. https://doi.org/10.1007/978-3-030-32952-5_6

Download citation

Publish with us

Policies and ethics