Skip to main content

Multiple Image Deblurring with High Dynamic-Range Poisson Data

  • Chapter
  • First Online:
  • 546 Accesses

Part of the book series: Springer INdAM Series ((SINDAMS,volume 36))

Abstract

An interesting problem arising in astronomical imaging is the reconstruction of an image with high dynamic range, for example a set of bright point sources superimposed to smooth structures. A few methods have been proposed for dealing with this problem and their performance is not always satisfactory. In this paper we propose a solution based on the representation, already proposed elsewhere, of the image as the sum of a pointwise component and a smooth one, with different regularization for the two components. Our approach is in the framework of Poisson data and to this purpose we need efficient deconvolution methods. Therefore, first we briefly describe the application of the Scaled Gradient Projection (SGP) method to the case of different regularization schemes and subsequently we propose how to apply these methods to the case of multiple image deconvolution of high-dynamic range images, with specific reference to the Fizeau interferometer LBTI of the Large Binocular Telescope (LBT). The efficacy of the proposed methods is illustrated both on simulated images and on real images, observed with LBTI, of the Jovian moon Io. The software is available at http://www.oasis.unimore.it/site/home/software.html.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    AIRY can be downloaded from http://www.airyproject.eu.

  2. 2.

    http://www.oasis.unimore.it/site/home/software.html.

  3. 3.

    The LBT is an international collaboration among institutions in the United States, Italy and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona Board of Regents; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Leibniz Institute for Astrophysics Potsdam, and Heidelberg University; the Ohio State University, and the Research Corporation, on behalf of the University of Notre Dame, University of Minnesota and University of Virginia.

References

  1. Anconelli, B., Bertero, M., Boccacci, P., Carbillet, M., Lantéri, H.: Reduction of boundary effects in multiple image deconvolution with an application to LBT LINC-NIRVANA. Astron. Astrophys. 448, 1217–1224 (2006)

    Article  Google Scholar 

  2. Bardsley, J.M., Goldes, J.: Regularization parameter selection methods for ill-posed poisson maximum likelihood estimation. Inverse Probl. 25, 095,005 (2009)

    Google Scholar 

  3. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8(1), 141–148 (1988)

    Article  MathSciNet  Google Scholar 

  4. Benfenati, A., Ruggiero, V.: Inexact bregman iteration with an application to poisson data reconstruction. Inverse Probl. 29, 065,016 (2013)

    Google Scholar 

  5. Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. IoP Publishing, Bristol (1998)

    Book  Google Scholar 

  6. Bertero, M., Boccacci, P.: A simple method for the reduction of boundary effects in the Richardson-Lucy approach to image deconvolution. Astron. Astrophys. 437, 369–374 (2005)

    Article  Google Scholar 

  7. Bertero, M., Boccacci, P., Desiderà, G., Vicidomini, G.: Image deblurring with Poisson data: from cells to galaxies. Inverse Probl. 25(12), 123,006 (2009)

    Google Scholar 

  8. Bertero, M., Boccacci, P., La Camera, A., Olivieri, C., Carbillet, M.: Imaging with LINC-NIRVANA, the Fizeau interferometer of the Large Binocular Telescope: state of the art and open problems. Inverse Probl. 27(11), 113,011 (2011)

    Google Scholar 

  9. Bertero, M., Boccacci, P., Talenti, G., Zanella, R., Zanni, L.: A discrepancy principle for Poisson data. Inverse Probl. 26(10), 10,500 (2010)

    Google Scholar 

  10. Bertsekas, D.: Nonlinear Programming. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  11. Bonettini, S., Landi, G., Loli Piccolomini, E., Zanni, L.: Scaling techniques for gradient projection-type methods in astronomical image deblurring. Int. J. Comput. Math. 90(1), 9–29 (2013)

    Article  MathSciNet  Google Scholar 

  12. Bonettini, S., Prato, M.: Nonnegative image reconstruction from sparse Fourier data: a new deconvolution algorithm. Inverse Probl. 26(9), 095,001 (2010)

    Google Scholar 

  13. Bonettini, S., Prato, M.: New convergence results for the scaled gradient projection method. Inverse Probl. 31(9), 095,008 (2015)

    Google Scholar 

  14. Bonettini, S., Ruggiero, V.: On the uniqueness of the solution of image reconstruction problems with Poisson data. In: Simos, T.E., Psihoyios, G., Tsitouras, C. (eds.), International Conference of Numerical Analysis and Applied Mathematics 2010, AIP Conference Proceedings, vol. 1281, pp. 1803–1806 (2010)

    Google Scholar 

  15. Bonettini, S., Ruggiero, V.: An alternating extragradient method for total variation-based image restoration. Inverse Problems 27, 095,001 (2011)

    Google Scholar 

  16. Bonettini, S., Zanella, R., Zanni, L.: A scaled gradient projection method for constrained image deblurring. Inverse Probl. 25(1), 015,002 (2009)

    Google Scholar 

  17. Byrne, C.L.: Iterative image reconstruction algorithms based on cross-entropy minimization. IEEE Trans. Image Proc. 2(1), 96–103 (1993)

    Article  Google Scholar 

  18. Carasso, A.S.: Linear and nonlinear image deblurring: a documented study. SIAM J. Numer. Anal. 36(6), 1659–1689 (1999)

    Article  MathSciNet  Google Scholar 

  19. Carbillet, M., La Camera, A., Deguignet, J., Prato, M., Bertero, M., Aristidi, E., Boccacci, P.: Strehl-constrained reconstruction of post-adaptive optics data and the Software Package AIRY, v. 6.1. In: Marchetti, E., Close, L.M., Véran, J.P. (eds.), Adaptive Optics Systems IV. Proceedings of SPIE, vol. 9148, p. 91484U (2014)

    Google Scholar 

  20. Charbonnier, P., Blanc-Féraud, L., Aubert, G., Barlaud, M.: Deterministic edge-preserving regularization in computed imaging. IEEE T. Image Process. 6, 298–311 (1997)

    Article  Google Scholar 

  21. Conrad, A., de Kleer, K., Leisenring, J., La Camera, A., Arcidiacono, C., Bertero, M., Boccacci, P., Defrère, D., de Pater, I., Hinz, P., Hofmann, K.H., Kürster, M., Rathbun, J., Schertl, D., Skemer, A., Skrutskie, M., Spencer, J., Veillet, C., Weigelt, G., Woodward, C.E.: Spatially Resolved M-Band Emission from Io’s Loki Patera-Fizeau Imaging at the 22.8m LBT. Astron. J. 149(5), 1–9 (2015)

    Google Scholar 

  22. Cornelio, A., Porta, F., Prato, M.: A convergent least-squares regularized blind deconvolution approach. Appl. Math. Comput. 259(12), 173–186 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Correia, S., Carbillet, M., Boccacci, P., Bertero, M., Fini, L.: Restoration of interferometric images: I. the software package AIRY. Astron. Astrophys. 387, 733–743 (2002)

    Google Scholar 

  24. Csiszár, I.: Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. Ann. Stat. 19(4), 2032–2066 (1991)

    Article  MathSciNet  Google Scholar 

  25. De Mol, C., Defrise, M.: Inverse imaging with mixed penalties. In: Proceedings of the International Symposium on Electromagnetic Theory, pp. 798–800. Pisa, Italy (2004)

    Google Scholar 

  26. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluver Academic Publishers, Dordrecht (1996)

    Book  Google Scholar 

  27. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984)

    Article  Google Scholar 

  28. Giovannelli, J.F., Coulais, A.: Positive deconvolution for superimposed extended source and point sources. Astron. Astrophys. 439, 401–412 (2005)

    Article  Google Scholar 

  29. Herbst, T., Ragazzoni, R., Andersen, D., Boehnhardt, H., Bizenberger, P., Eckart, A., Gaessler, W., Rix, H.W., Rohloff, R.R., Salinari, P., Soci, R., Straubmeier, C., Xu, W.: LINC-NIRVANA: a fizeau beam combiner for the large binocular telescope. In: W.A. Traub (ed.), Interferometry for Optical Astronomy II. Proceedings of SPIE, vol. 4838, pp. 456–465 (2003)

    Google Scholar 

  30. Herbst, T.M., Santhakumari, K.K.R., Klettke, M., Arcidiacono, C., Bergomi, M., Bertram, T., Berwein, J., Bizenberger, P., Briegel, F., Farinato, J., Marafatto, L., Mathar, R., McGurk, R., Ragazzoni, R., Viotto, V.: Commissioning multi-conjugate adaptive optics with LINC-NIRVANA on LBT. In: Adaptive Optics Systems VI. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10703, p. 107030B (2018). https://doi.org/10.1117/12.2313421

  31. Hill, J.M., Green, R.F., Slagle, J.H.: The large binocular telescope. In: Ground-based and Airborne Telescopes. Proceedings of SPIE, vol. 6267, p. 62670Y (2006)

    Google Scholar 

  32. Hinz, P., Bippert-Plymate, T., Breuninger, A., Connors, T., Duffy, B., Esposito, S., Hoffmann, W., Kim, J., Kraus, J., McMahon, T., Montoya, M., Nash, R., Durney, O., Solheid, E., Tozzi, A., Vaitheeswaran, V.: Status of the LBT interferometer. In: Optical and Infrared Interferometry. Proceedings of SPIE, vol. 7013, p. 701328 (2008)

    Google Scholar 

  33. Hom, E.F.Y., Marchis, F., Lee, T.K., Haase, S., Agard, D.A., Sedat, J.W.: Aida: an adaptive image deconvolution algorithm with application to multi-frame and three-dimensional data. J. Opt. Soc. Am. A-24, 1580–1600 (1994)

    Google Scholar 

  34. Jefferies, S.M., Christou, J.C.: Restoration of astronomical images by iterative blind deconvolution. Astron. J. 415, 609–862 (1993)

    Article  Google Scholar 

  35. La Camera, A., Antonucci, S., Bertero, M., Boccacci, P., Lorenzetti, D., Nisini, B.: Image reconstruction for observations with a high dynamic range: LINC-NIRVANA simulations of a stellar jet. In: Delplancke, F., Rajagopal, F.J.K., Malbet, F. (eds.) Optical and Infrared Interferometry III. Proceedings of SPIE, vol. 8455, p. 84553D (2012)

    Google Scholar 

  36. Lantéri, H., Roche, M., Aime, C.: Penalized maximum likelihood image restoration with positivity constraints: multiplicative algorithms. Inverse Probl. 18(5), 1397–1419 (2002)

    Article  MathSciNet  Google Scholar 

  37. Leisenring, J.M., Hinz, P.M., Skrutskie, M.F., Skemer, A., Woodward, C.E., Veillet, C., Arcidiacono, C., Bailey, V., Bertero, M., Boccacci, P., Conrad, A., de Kleer, K., de Pater, I., Defrère, D., Hill, J., Hofmann, K.H., Kaltenegger, L., La Camera, A., Nelson, M.J., Schertl, D., Spencer, J., Weigelt, G., Wilson, J.C.: Fizeau interferometric imaging of Io volcanism with LBTI/LMIRcam. In: Optical and Infrared Interferometry IV. Proceedings of SPIE, vol. 9146, p. 91462S (2014)

    Google Scholar 

  38. Mugnier, L.M., Fusco, T., Conan, J.M.: Mistral: a myopic edge-preserving image restoration method, with application to astronomical adaptive-optics-corrected long-exposure images. J. Opt. Soc. Am. A-21(4), 1841–1854 (2004)

    Google Scholar 

  39. Porta, F., Prato, M., Zanni, L.: A new steplength selection for scaled gradient methods with application to image deblurring. J. Sci. Comput. 65(3), 895–919 (2015)

    Article  MathSciNet  Google Scholar 

  40. Porta, F., Zanella, R., Zanghirati, G., Zanni, L.: Limited-memory scaled gradient projection methods for real-time image deconvolution in microscopy. Commun. Nonlinear Sci. Numer. Simul. 21(1–3), 112–127 (2015)

    Article  MathSciNet  Google Scholar 

  41. Prato, M., Cavicchioli, R., Zanni, L., Boccacci, P., Bertero, M.: Efficient deconvolution methods for astronomical imaging: algorithms and IDL-GPU codes. Astron. Astrophys. 539, A133 (2012)

    Article  Google Scholar 

  42. Prato, M., La Camera, A., Bonettini, S., Bertero, M.: A convergent blind deconvolution method for post-adaptive-optics astronomical imaging. Inverse Probl. 29(6), 065,017 (2013)

    Google Scholar 

  43. Prato, M., La Camera, A., Bonettini, S., Rebegoldi, S., Bertero, M., Boccacci, P.: A blind deconvolution method for ground based telescopes and fizeau interferometers. New Astron. 40, 1–13 (2015)

    Article  Google Scholar 

  44. Skilling, J., Bryan, R.K.: Maximum entropy image reconstruction: general algorithm. Mon. Not. R. Astr. Soc. 211, 111–124 (1984)

    Article  Google Scholar 

  45. Skrutskie, M.F., Jones, T., Hinz, P., Garnavich, P., Wilson, J., Nelson, M., Solheid, E., Durney, O., Hoffmann, W.F., Vaitheeswaran, V., McMahon, T., Leisenring, J., Wong, A., Garnavic, P., Wilson, J., Nelson, M., Sollheid, E., Durney, O., Hoffmann, W.F., Vaitheeswaran, V., McMahon, T., Leisenring, J., Wong, A.: The Large Binocular Telescope mid-infrared camera (LMIRcam): final design and status. In: McLean, I.S., Ramsay, S.K., Takami, H. (eds.) Ground-based and Airborne Instrumentation for Astronomy III. Proceedings of SPIE, vol. 7735, p. 77353H (2010). https://doi.org/10.1117/12.857615. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=750817

  46. Snyder, D.L., Hammoud, A.M., White, R.L.: Image recovery from data acquired with a charge-coupled-device camera. J. Opt. Soc. Am. A 10(5), 1014–1023 (1994)

    Article  Google Scholar 

  47. Snyder, D.L., Helstrom, C.W., Lanterman, A.D., Faisal, M., White, R.L.: Compensation for readout noise in CCD images. J. Opt. Soc. Am. A 12(2), 272–283 (1995)

    Article  Google Scholar 

  48. Titterington, D.: On the iterative image space reconstruction algorithm for ECT. IEEE Trans. Med. Imaging 6(1), 52–56 (1987)

    Article  Google Scholar 

  49. Vio, R., Bardsley, J., Wamsteher, W.: Least-squares methods with poissonian noise: analysis and comparison with the richardson-lucy algorithm. Astron. Astrophys. 436(2), 741–755 (2005)

    Article  Google Scholar 

  50. Zanella, R., Boccacci, P., Zanni, L., Bertero, M.: Efficient gradient projection methods for edge-preserving removal of Poisson noise. Inverse Probl. 25(4), 045,010 (2009)

    Google Scholar 

Download references

Acknowledgements

We thank Al Conrad, LBTO, for permission of using images of Io at M-band, observed with LBTI/LMIRcam [32, 45] during UT 2013 December 24 [21, 37]. Marco Prato is a member of the INdAM Research group GNCS, which is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Prato .

Editor information

Editors and Affiliations

Appendices

Appendix

Regularization functions

In this paper we assume that \({\varvec{f}}\) is a \(N \times N\) array extended (when needed) with periodic boundary conditions, i.e., if we set \({\varvec{n}} = (n_1, n_2)\), then \({\varvec{f}}(N+1,n_2) = {\varvec{f}}(1,n_2)\), \({\varvec{f}}(n_1,N+1) = {\varvec{f}}(n_1,1)\) and \({\varvec{f}}(N+1,N+1) = {\varvec{f}}(1,1)\).

For introducing the regularization functions considered in our methods and software we need some notation. We set \({\varvec{n}}_{1 \pm } = (n_1 \pm 1, n_2)\) and \({\varvec{n}}_{2 \pm } = (n_1, n_2 \pm 1)\) and we introduce the square and the modulus of the discrete gradient

$$\begin{aligned} {\varvec{D}}^2({\varvec{n}}) = \big [ {\varvec{f}}({\varvec{n}}_{1+}) - {\varvec{f}}({\varvec{n}})\big ]^2 \!+\! \big [{\varvec{f}}({\varvec{n}}_{2+}) - {\varvec{f}}({\varvec{n}})\big ]^2, \\ \nonumber |{\varvec{D}}({\varvec{n}})| = \sqrt{\big [{\varvec{f}}({\varvec{n}}_{1+}) - {\varvec{f}}({\varvec{n}})\big ]^2 \!+\! \big [{\varvec{f}}({\varvec{n}}_{2+}) - {\varvec{f}}({\varvec{n}}) \big ]^2}. \end{aligned}$$
(28)

Then, the seven regularization functions and the corresponding arrays \(U_1,V_1\) are the following:

  • Zeroth order Tikhonov (T-0) regularization

    $$\begin{aligned} J_1({\varvec{f}}) = \frac{1}{2} \sum _{\varvec{n}} |{\varvec{f}}({\varvec{n}})|^2~~, \end{aligned}$$
    (29)

    for which (5) holds by setting

    $$\begin{aligned} {\varvec{U}}_1({\varvec{n}}) = 0~~,~~{\varvec{V}}_1({\varvec{n}}) = {\varvec{f}}({\varvec{n}}). \end{aligned}$$
    (30)
  • First order Tikhonov (T-1) regularization

    $$\begin{aligned} J_1({\varvec{f}}) = \frac{1}{2} \sum _{{\varvec{n}}} {\varvec{D}}^2({\varvec{n}})~~, \end{aligned}$$
    (31)

    for which (5) holds by setting

    $$\begin{aligned} {\varvec{U}}_1({\varvec{n}}) =&~{\varvec{f}}({\varvec{n}}_{1+})+{\varvec{f}}({\varvec{n}}_{2+})+{\varvec{f}}({\varvec{n}}_{1-})+{\varvec{f}}({\varvec{n}}_{2-})~~, \\ \nonumber {\varvec{V}}_1({\varvec{n}}) =&~4 {\varvec{f}}({\varvec{n}})~~. \end{aligned}$$
  • Second order Tikhonov (T-2) regularization

    $$\begin{aligned} J_1({\varvec{f}}) = \frac{1}{2} \sum _{\varvec{n}}(\varDelta {\varvec{f}})({\varvec{n}})^2~~, \end{aligned}$$
    (32)

    where \(\varDelta \) denotes the discrete Laplacian. As remarked in [36], it can be written in the form

    $$\begin{aligned} J_1({\varvec{f}}) = \frac{1}{2} \sum _{\varvec{n}} \big [{\varvec{f}}({\varvec{n}}) -(B{\varvec{f}})({\varvec{n}})\big ]^2~~, \end{aligned}$$
    (33)

    where B is the convolution matrix obtained from the \(3 \times 3\) mask with columns (0, 1/4, 0),  (1/4, 0, 1/4) and (0, 1/4, 0). Then (5) holds by setting

    $$\begin{aligned} {\varvec{U}}_1({\varvec{n}}) =&~[(B + B^T) {\varvec{f}}]({\varvec{n}})~~, \\ \nonumber {\varvec{V}}_1({\varvec{n}}) =&~[(I + B^TB){\varvec{f}}]({\varvec{n}})~~. \end{aligned}$$
  • Cross-Entropy (CE) regularization [17, 18]

    $$\begin{aligned} J_1({\varvec{f}}) = KL({\varvec{f}}, \bar{\varvec{f}}) = \sum _{{\varvec{n}}} \big \{{\varvec{f}}({\varvec{n}})\ln \left( \frac{{\varvec{f}}({\varvec{n}})}{\bar{\varvec{f}}({\varvec{n}})}\right) + \bar{\varvec{f}}({\varvec{n}}) - {\varvec{f}}({\varvec{n}})\big \}~~, \end{aligned}$$
    (34)

    where \(\bar{\varvec{f}}\) is a reference image. When \(\bar{\varvec{f}}\) is a constant array, then the cross-entropy becomes the negative Shannon entropy considered, for instance, in [44]. If both \({\varvec{f}}\) and \(\bar{\varvec{f}}\) satisfy the constraint (4), then a possible choice for the functions \(U_1,~V_1\) is

    $$\begin{aligned} {\varvec{U}}_1({\varvec{n}}) = - \ln \frac{{\varvec{f}}({\varvec{n}})}{c}~~,~~{\varvec{V}}_1({\varvec{n}}) = - \ln \frac{\bar{\varvec{f}}({\varvec{n}})}{c}~~, \end{aligned}$$
    (35)

    where c is the flux constant defined in (4). We remark that, since the background is taken into account by the algorithms, \({\varvec{f}}\) can be zero in some pixels; for this reason in the computation of the gradient we add a small quantity to the values of \({\varvec{f}}\). We also remark that when \(\bar{\varvec{f}}\) is a constant, e.g. \(c/N^2\), then \({\varvec{V}}_1({\varvec{n}}) = 2 \mathrm{ln}~N\).

  • Hypersurface (HS) regularization [20]

    $$\begin{aligned} J_1({\varvec{f}}) = \sum _{{\varvec{n}}} \sqrt{\delta ^2 + {\varvec{D}}^2({\varvec{n}})}~~,~~\delta > 0~~, \end{aligned}$$
    (36)

    for which (5) holds by setting

    $$\begin{aligned} {\varvec{U}}_1({\varvec{n}}) = ~\frac{{\varvec{f}}({\varvec{n}}_{1+}) \!+\! {\varvec{f}}({\varvec{n}}_{2+})}{\sqrt{\delta ^2 \!+\! {\varvec{D}}^2({\varvec{n}})}} \!+\! \frac{{\varvec{f}}({\varvec{n}}_{1-})}{\sqrt{\delta ^2 \!+\! {\varvec{D}}^2({\varvec{n}}_{1-})}} \!+\! \frac{{\varvec{f}}({\varvec{n}}_{2-})}{\sqrt{\delta ^2 \!+\! {\varvec{D}}^2({\varvec{n}}_{2-})}}~,\\ \nonumber {\varvec{V}}_1({\varvec{n}}) = ~\frac{2 {\varvec{f}}({\varvec{n}})}{\sqrt{\delta ^2 \!+\! {\varvec{D}}^2({\varvec{n}})}} + \frac{{\varvec{f}}({\varvec{n}})}{\sqrt{\delta ^2 \!+\! {\varvec{D}}^2({\varvec{n}}_{1-})}} + \frac{{\varvec{f}}({\varvec{n}})}{\sqrt{\delta ^2 \!+\! {\varvec{D}}^2({\varvec{n}}_{2-})}}~. \end{aligned}$$

    The application of SGP to the case of HS regularization is already considered in [15] and [4] for a comparison of its accuracy with that of Total Variation (TV) regularization.

  • Markov random field (MRF) regularization [27]

    $$\begin{aligned} J_1({\varvec{f}}) = \frac{1}{2}\sum _{{\varvec{n}}} \sum _{{\varvec{n}}' \in \mathcal{N}({\varvec{n}})}\sqrt{\delta ^2 + \left( \frac{{\varvec{f}}({\varvec{n}})-{\varvec{f}}({\varvec{n}}')}{\epsilon ({\varvec{n}}')}\right) ^2}~~, \end{aligned}$$
    (37)

    where \(\delta >0\), \(\mathcal{N}({\varvec{n}})\) is a symmetric neighborhood made up of the eight first neighbors of \({\varvec{n}}\) and \(\epsilon ({\varvec{n}}')\) is equal to 1 for the horizontal and vertical neighbors and equal to \(\sqrt{2}\) for the diagonal ones; thanks to the symmetry of \(\mathcal{N}({\varvec{n}})\), Eq. (5) holds by setting

    $$\begin{aligned} {\varvec{U}}_1({\varvec{n}}) =&~\sum _{{\varvec{n}}' \in \mathcal{N}({\varvec{n}})}\frac{{\varvec{f}}({\varvec{n}}')}{\epsilon ({\varvec{n}}')\sqrt{\delta ^2 + \left( \frac{{\varvec{f}}({\varvec{n}}')-{\varvec{f}}({\varvec{n}}')}{\epsilon ({\varvec{n}}')}\right) ^2}}~~, \\ \nonumber {\varvec{V}}_1({\varvec{n}}) =&~\sum _{{\varvec{n}}' \in \mathcal{N}({\varvec{n}})}\frac{{\varvec{f}}({\varvec{n}})}{\epsilon ({\varvec{n}}')\sqrt{\delta ^2 + \left( \frac{{\varvec{f}}({\varvec{n}})-{\varvec{f}}({\varvec{n}}')}{\epsilon ({\varvec{n}}')}\right) ^2}}~~. \end{aligned}$$
  • MISTRAL regularization (MIST) [38]

    $$\begin{aligned} J_1({\varvec{f}}) = \sum _{{\varvec{n}}} \left\{ |{\varvec{D}}({\varvec{n}})| -\delta \ln \left( 1 + \frac{|{\varvec{D}}({\varvec{n}})|}{\delta }\right) \right\} ~~,~~\delta > 0~~, \end{aligned}$$
    (38)

    for which (5) holds by setting

    $$\begin{aligned} {\varvec{U}}_1({\varvec{n}}) =&~\frac{{\varvec{f}}({\varvec{n}}_{1+}) + {\varvec{f}}({\varvec{n}}_{2+})}{\delta + |{\varvec{D}}({\varvec{n}})|} +\frac{{\varvec{f}}({\varvec{n}}_{1-})}{\delta + |{\varvec{D}}({\varvec{n}}_{1-})|} + \frac{{\varvec{f}}({\varvec{n}}_{2-})}{\delta + |{\varvec{D}}({\varvec{n}}_{2-})|}~~, \\ \nonumber {\varvec{V}}_1({\varvec{n}}) =&~\frac{2{\varvec{f}}({\varvec{n}})}{\delta + |{\varvec{D}}({\varvec{n}})|} + \frac{{\varvec{f}}({\varvec{n}})}{\delta + |{\varvec{D}}({\varvec{n}}_{1-})|} + \frac{{\varvec{f}}({\varvec{n}})}{\delta + |{\varvec{D}}({\varvec{n}}_{2-})|}~~. \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prato, M., La Camera, A., Arcidiacono, C., Boccacci, P., Bertero, M. (2019). Multiple Image Deblurring with High Dynamic-Range Poisson Data. In: Donatelli, M., Serra-Capizzano, S. (eds) Computational Methods for Inverse Problems in Imaging. Springer INdAM Series, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-32882-5_6

Download citation

Publish with us

Policies and ethics