Skip to main content

Solid-State Optical Radiation Matrix Receivers in Robots’ Vision Systems

  • Chapter
  • First Online:
Smart Electromechanical Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 261))

  • 381 Accesses

Abstract

Problem statement: Video sensors based on matrix optical receivers are often being used as a part of binocular and multi-angle portable robot’s vision systems. Their main aim is to provide robot a possibility to orient in any environment. Due to complex architecture of matrix receiver’s surface, instrumental errors may occur, which can have a significant impact the measuring result in robot’s orientation system. Thus, systematic research of matrix photodetector’s parameters, which affect the value of electric signal, is significant for the measuring video information schemes of portable robots’ video sensors accuracy analysis. Purpose of research: development of an algorithm for measuring the variation of optical parameters of the photodetector surface. Results: basing on ellipsometry method, algorithm for passing optical rays through the multilayer matrix structure and software for its implementation were developed, the variation of parameters of the solid-state matrix receiver’s surface were calculated. Practical significance: the ellipsometry method can be applied to control the quality of matrix optical receivers. The program, developed during this research, gives a possibility to automate the calculation of the optical parameters of video sensors matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wan, S., Zhang, X., Xu, M., Wang, W., Jiang, X.: Region-adaptive path planning for precision optical polishing with industrial robots. Opt. Express 26(18), 23782–23795 (2018)

    Article  Google Scholar 

  2. Teka, B., Raja, R., Dutta, A.: Learning based end effector tracking control of a mobile manipulator for performing tasks on an uneven terrain. Int. J. Intell. Robot. Appl. https://doi.org/10.1007/s41315-019-00081-8 (2019)

    Article  Google Scholar 

  3. Xu, J., Chen, R., Liu, S., Guan, Y.: Self-recalibration of a robot-assisted structured-light-based measurement system. Appl. Opt. 56(32), 8857–8865 (2017)

    Article  Google Scholar 

  4. Jiang, G., Luo, M., Lu, L., Bai, K., Abdelaziz, O., Chen, S.: Vision solution for an assisted puncture robotics system positioning. Appl. Opt. 57(28), 8385–8393 (2018)

    Article  Google Scholar 

  5. Wang, D., Liang, H., Zhu, H., Zhang, S.: A Bionic camera-based polarization navigation sensor. Sensors 14, 13006–13023 (2014). https://doi.org/10.3390/s140713006

    Article  Google Scholar 

  6. Zhao, H., Xu, W.: A bionic polarization navigation sensor and its calibration method. Sensors. 16, 1223 (2016). https://doi.org/10.3390/s16081223

    Article  Google Scholar 

  7. Michael, F., Thorsten, G., Gene, P.: Very large area CMOS active-pixel sensor for digital radiography. IEEE Trans. Electron Devices. 56(11) (2009)

    Google Scholar 

  8. Teyssieux, D., Euphrasie, S., Cretin, B.: MEMS in-plane motion/vibration measurement system based CCD camera. Measurement 44(10), 2205–2216 (2011)

    Article  Google Scholar 

  9. Hill, R.C., Lafortune, S.: Scaling the formal synthesis of supervisory control software for multiple robot systems. In: Conference: 2017 American Control Conference (ACC). p. 3840 (2017). https://doi.org/10.23919/acc.2017.7963543

  10. Gonzalez, A.G., Alves, M.V., Viana, G.S., Carvalho, L.K., Basilio, J.C.: Supervisory control-based navigation architecture: a new framework for autonomous robots in industry environments. Ind. Inf. IEEE Trans. 14(4), 1732–1743 (2018)

    Article  Google Scholar 

  11. Macktoobian, M., Aliyari, M.Sh: Optimal distributed interconnectivity of multi-robot systems by spatially-constrained clustering. J. Adapt. Behav. 25(2), 96 (2017). https://doi.org/10.1177/1059712317700500

    Article  Google Scholar 

  12. Akimov, Y.K.: Silicon radiation detectors (Review). Instrum. Exp. Tech. 50(1)1–28 (2007), ISSN 0020-4412

    Article  MathSciNet  Google Scholar 

  13. Zmuidzinas, J.: Thermal noise and correlations in photon detection. Appl. Opt. 42(25), 4989 (2003)

    Article  Google Scholar 

  14. Wang, D., Zhang, T., Kuang, H.G.: Relationship between the charge-coupled device signal-to-noise ratio and dynamic range with respect to the analog gain. Appl. Opt. 51(29), 7103–7114 (2013)

    Article  Google Scholar 

  15. Chen, L., Zhang, X., Lin, J., Sha, D.: Signal-to-noise ratio evaluation of a CCD camera. Opt. Laser Technol. 41, 574–579 (2009)

    Article  Google Scholar 

  16. Weiwei, F., Yanjun, J., Ligang, C.: The impact of signal–noise ratio on degree of linear polarization measurement. Optik—Int. J. Light Electron Opt. 124(3), 192–194 (2013)

    Article  Google Scholar 

  17. Davenport, J.J., Hodgkinson, J., Saffell, J.R., Tatam, R.P.: Noise analysis for CCD-based ultraviolet and visible spectrophotometry. Appl. Opt. 54, 8135–8144 (2015)

    Article  Google Scholar 

  18. Liu, H., Zhang, J.: Dark current and noise analyses of quantum dot infrared photodetectors. Appl. Opt. 51, 2767–2771 (2012)

    Article  Google Scholar 

  19. Yang D.X.D., Gamal, A.E.: Comparative analysis of SNR for image sensors with enhanced dynamic range (1999). http://isl.stanford.edu/groups/elgamal/abbas_publications/C068.pdf

  20. Nam, H., Park, J.L., Choi, J.S., Lee, J.G.: The optimization of zero-spaced microlenses for 2.2um pixel CMOS image sensor. In: Proceeding of SPIE 6520, Optical Microlithography XX (2007)

    Google Scholar 

  21. Nussbaum, Ph, Völkel, R., Herzig, H.P., Eisner, M., Haselbeck, S.: Design, fabrication and testing of microlens arrays for sensors and microsystems. Pure Appl. Opt. 6, 617–636 (1997)

    Article  Google Scholar 

  22. Huber, M., Pauluhn, A., Culhane, J.: CCD and CMOS sensors. Observing Photons in Space ISSI Scientific Reports Series, ESA/ISSI, pp. 391–408 (2010)

    Google Scholar 

  23. Berger, C.R., Benlachtar, Y., Killey, R.I., Milder, P.A.: Theoretical and experimental evaluation of clipping and quantization noise for optical OFDM. Opt. Express 19, 17713–17728 (2011)

    Article  Google Scholar 

  24. Konnik, M.V., Manykin, E.A., Starikov, S.N.: Optical-digital correlator with increased dynamic range using spatially varying pixels exposure technique. Opt. Mem. Neural Net. Inf. Opt. 18(2), 61–71 (2009)

    Article  Google Scholar 

  25. Konnik, M.V., Welsh, J.S.: On numerical simulation of high-speed CCD/CMOS-based wavefront sensors in adaptive optics. SPIE Optical Engineering+Applications (2011)

    Google Scholar 

  26. Ding, R., Venetsanopoulos, A.N.: Generalized homomorphic and adaptive order statistic filters for the removal of impulsive and signal-dependent noise. IEEE Trans. Circuits Syst. 34(8), 948–955 (1987)

    Article  Google Scholar 

  27. Chen, Z., Wang, X., Liang, R.: Calibration method of microgrid polarimeters with image interpolation. Appl. Opt. 54, 995–1001 (2015)

    Article  Google Scholar 

  28. Meza, P., Machuca, G., Torres, S., Martin, C.S., Vera, E.: Simultaneous digital super-resolution and nonuniformity correction for infrared imaging systems. Appl. Opt. 54, 6508–6515 (2015)

    Article  Google Scholar 

  29. Liu, G., Tan, O., Gao, S.S., Pechauer, A.D., Lee, B., Lu, C.D., Fujimoto, J.G., Huang, D.: Postprocessing algorithms to minimize fixed-pattern artifact and reduce trigger jitter in swept source optical coherence tomography. Opt. Express 23, 9824–9834 (2015)

    Article  Google Scholar 

  30. Tyo, J.S.: Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error. J. Appl. Opt. 41, 619–630 (2002)

    Article  Google Scholar 

  31. Feng, W., Chen, L.: Relative orientation accuracy analysis of the polarizers in a polarization CCD camera. Optik 121, 1401–1404 (2010)

    Article  Google Scholar 

  32. Chipman, R.A.: Polarization ray tracing. In: Proceeding of SPIE 0766, Recent Trends in Optical Systems Design and Computer Lens Design Workshop, 10 June 1987. https://doi.org/10.1117/12.940204

  33. Chipman, R.A.: Polarization analysis of optical systems. Opt. Eng. 28(2) (1989)

    Google Scholar 

  34. Korotaev, V.V.: Computing the polarization of optical radiation crossing mirror and prism systems. [Article@METOD RASCHETA SOSTOYANIYA POLYARIZATSII OPTICHESKOGO IZLUCHENIYA PRI PROKHOZHDENII ZERKAL’NYKH I PRIZMENNYKH SISTEM.] (1979) Izvestia vyssih ucebnyh zavedenij. Priborostroenie, 22(4), 77–82

    Google Scholar 

  35. Irene, E.A., Tompkins, H.G. (eds.): Handbook of ellipsometry. William Andrew Publisher (2005)

    Google Scholar 

  36. Fujiwara, H.: Spectroscopic ellipsometry: principles and applications. Wiley, London (2007)

    Google Scholar 

  37. Tikhiii, A.A., Gritskikh, V.A., Kara-Murza, S.V., Nikolaenko, YuM, Zhikharev, I.V.: Features of interpreting ellipsometric measurement results. Opt. Spectrosc. 112(2), 300–304 (2012)

    Article  Google Scholar 

  38. Azzam, R.M.A.: Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal. Opt. Lett. 2(6), 148–150 (1978)

    Article  Google Scholar 

  39. Chipman, R.A.: Polarization considerations for Optical Systems. Opt. Eng. 28(2), 85 (1989)

    MathSciNet  Google Scholar 

  40. Atkinson, Gary A., Ernst, Jürgen D.: High-sensitivity analysis of polarization by surface reflection. Mach. Vis. Appl. 29(7), 1171–1189 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Government of the Russian Federation, Grant (08-08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Victoria A. Ryzhova or Daria A. Drozdova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lobanova, A.Y., Ryzhova, V.A., Korotaev, V.V., Drozdova, D.A. (2020). Solid-State Optical Radiation Matrix Receivers in Robots’ Vision Systems. In: Gorodetskiy, A., Tarasova, I. (eds) Smart Electromechanical Systems. Studies in Systems, Decision and Control, vol 261. Springer, Cham. https://doi.org/10.1007/978-3-030-32710-1_13

Download citation

Publish with us

Policies and ethics