Skip to main content

Adaptive-Robust Control of Technological Processes with Delay on Control

  • Chapter
  • First Online:
Cyber-Physical Systems: Industry 4.0 Challenges

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 260))

Abstract

A method for the synthesis of adaptive systems is proposed, which ensures the robustness of the system with respect to the delay, technological objects with a delay in control in the presence of uncertainty in setting the latency and time-varying coefficients of the model of the linear inertial part changing in time, within a certain range of normal operation, arbitrary to the law. Adaptive identification type systems and direct adaptive control systems are considered. The basis for the synthesis of the main control loop of the control system is the method for determining the tuning parameters of the traditional laws of regulation (I, PI, PID). As the main contour, used a system, which is robust in relation to the change in the magnitude of the delay. The chapter presents an identification approach and direct adaptive control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mahmoodabadi, M., Taherkhorsandi, M., Talebipour, M., Castillo-Villar, K.: Adaptive robust PID control subject to supervisory decoupled sliding mode control based upon genetic algorithm optimization. Trans. Inst. Measur. Control 37(4), 505–514 (2015)

    Article  Google Scholar 

  2. Aldemir, A.: PID controller tuning based on phase margin (PM) for wireless temperature control. Wirel. Pers. Commun. 103(3), 2621–2632 (2018)

    Article  Google Scholar 

  3. Sato, T., Tajika, H., Konishi, Y.: Adaptive PID control system with assigned robust stability. IEEJ Trans. Electr. Electron. Eng. 13(8), 1169–11181 (2018)

    Article  Google Scholar 

  4. Suganya, S.: Design of PID controller for chemical process-heuristic algorithm approach. In: Proceedings of Third International Conference on Science Technology Engineering & Management (ICONSTEM) (2017)

    Google Scholar 

  5. Bensafia, Y.: Robust fractionalized PID controller design using the sub-optimal approximation of FOTF. In: Bensafia, Y. (ed.) Proceedings of 6th International Conference on Systems and Control (ICSC) (2017)

    Google Scholar 

  6. Pyrkin, A.A., et al.: Compensation of polyharmonic perturbations acting on the state and output of a linear object with a delay in the control channel. Avtomatika i telemehanika 12, 43–64 (2015) (in Russian)

    Google Scholar 

  7. Paramonov, A.V., Gerasimov, D.N., Nikiforov, V.O.: Synthesis of an adaptive parameter tuning algorithm with improved convergence for a linear dynamic error model. Izvestija vysshih uchebnyh zavedenij. Priborostroenie 60(9), 818–825 (2017) (in Russian)

    Google Scholar 

  8. Cykunov, A.M.: Robust Control with Disturbance Compensation, 300 p. M.:Fizmatlit (2012) (in Russian)

    Google Scholar 

  9. Vilanova, R., Arrieta, O.: Robust PI/PID controllers for load disturbance based on direct synthesis. ISA Trans. 81, 177–196 (2018)

    Google Scholar 

  10. Nobuyama, E., Kami, Y.: Robust PID controller design for both delay-free and time-delay systems. IFAC Papersonline 51(4), 930–935 (2018)

    Google Scholar 

  11. Parsheva, E.A., Tsykunov, A.M.: Adaptive decentralized control of multivariable objects. Autom. Remote Control 62(2), 290–330 (2001)

    Article  MathSciNet  Google Scholar 

  12. Krstic, M.: Delay Compensation for Nonlinear, Adaptive, and PDE Systems, p. 466. Birkhauser, Springer (2009)

    Google Scholar 

  13. Furtat, I.B., Tsykunov, A.M.: Adaptive control of plants of unknown relative degree. Autom. Remote Control 71(6), 1076–1084 (2010)

    Article  MathSciNet  Google Scholar 

  14. Denisenko V.V.: Raznovidnosti PID - reguljatorov [Varieties of PID—regulators]. Avtomatizacija v pro-myshlennosti 6, 45–50 (2007)

    Google Scholar 

  15. Fokin, A.L.L.: Synthesis of robust process control systems with standard controllers. Izv. SPbGTI(TU) 27, 101–106 (in Russian)

    Google Scholar 

  16. Remizova, O.A., Syrokvashin, V.V., Fokin, A.L.: Synthesis of robust control systems with standard controllers. Izv. vuzov. Priborostroenie. 58(12), 12–18 (2015) (in Russian)

    Google Scholar 

  17. Gogol, I.V., Remizova, O.A., Syrokvashin, V.V., Fokin, A.L.: Synthesis of robust regulators to control technological processes in the class of traditional laws of regulation. Izv. SPbGTI(TU) 44, 98–105 (2018) (in Russian)

    Google Scholar 

  18. Jakovis, L.M.: Simple ways to calculate typical regulators for complex industrial automation objects. Avtomatizacija v promyshlennosti 6, 51–56 (2007) (in Russian)

    Google Scholar 

  19. Kim, D.P.: Multidimensional, Nonlinear, Optimal and Adaptive Systems, 400 p. M.:Fizmatlit (2007) (in Russian)

    Google Scholar 

  20. Aranovskiy, S., Bobtsov, A., Ortega, R., Pyrkin, A.: Improved transients in multiple frequencies estimation via dynamic regressor extension and mixing. In: 12th IFAC International Workshop on Adaptation and Learning in Control and Signal Processing, vol. 49, no. 13, pp. 99–104 (2016)

    Google Scholar 

  21. Andrievskij, B.R., Bobcov, A.A., Fradkov, A.L.: Methods of Analysis and Synthesis of Nonlinear Control Systems, 336 p. M. Izhevsk: Institut komp’juternyh issledovanij (2018) (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga A. Remizova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gogol, I.V., Remizova, O.A., Syrokvashin, V.V., Fokin, A.L. (2020). Adaptive-Robust Control of Technological Processes with Delay on Control. In: Kravets, A., Bolshakov, A., Shcherbakov, M. (eds) Cyber-Physical Systems: Industry 4.0 Challenges. Studies in Systems, Decision and Control, vol 260. Springer, Cham. https://doi.org/10.1007/978-3-030-32648-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32648-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32647-0

  • Online ISBN: 978-3-030-32648-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics