Skip to main content

Conceptual Approach to Building a Digital Twin of the Production System

  • Chapter
  • First Online:

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 259))

Abstract

The digital twin is an important component of the cyber-physical system. This new structure of the production system was the result of the development of information technology. The article shows that, despite the long history and success in the development of production information systems, the concept of building digital twins of production systems is at an early stage. One of the problems in creating digital twins is the need for integration and joint processing of a large amount of heterogeneous information. It is shown that the problem of reflecting the current state of the production system is in many ways similar to the problem of the internal representation of the surrounding world in living systems. It is proposed to choose the theory of the levels of the physiologist N. A. Bernstein as the basis of the conceptual approach to the development of digital twins. The mechanisms of forming models of the external world at every level are outlined. A description of the hierarchical system for processing different types of information and obtaining an invariant representation of the external world are presented. The principles of constructing a virtual image in the organization of motor activity are formulated. The implementation of these principles when building a digital twin of the production process will improve the efficiency of integration methods and joint processing of information.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kamensky, E.G.: Context of NBIC-technologies development: institutions, ideology and social myths. Mediterr. J. Soc. Sci. 6(6), 181–185 (2015)

    Google Scholar 

  2. Roco, M.C., Bainbridge, W.S. (eds.): Converging Technologies for Improving Human Performance: Nanotechnology, Biotechnology, Information Technology and Cognitive Science. Kluwer Academic Publishers, The Netherlands (2003)

    Google Scholar 

  3. Lee, J., Bagheri, B., Kao, H.A.: A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufact. Lett. 3, 18–23 (2015)

    Article  Google Scholar 

  4. Tarassov, V.B.: Enterprise total agentification as a way to industry 4.0: forming artificial societies via goal-resource networks. In: Abraham, A., Kovalev, S., Tarassov, V., Snasel, V., Sukhanov, A. (eds) Proceedings of the Third International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’18). IITI’18 2018. Advances in Intelligent Systems and Computing, vol. 874. Springer, Cham (2019). http://dx.doi.org/10.1007/978-3-030-01818-4_3

  5. Koval’, V.A., Osenin, V.N., Suyatinov, S.I., Torgashova O.Y.: J. Comput. Syst. Sci. Int. 50(4), 638–653 (2011). http://dx.doi.org/10.1134/S1064230711040125

    Article  MathSciNet  Google Scholar 

  6. Protalinsky, O.M., Shcherbatov, I.A., Stepanov P.V.: Identification of the actual state and entity availability forecasting in power engineering using neural-network technologies. J. Phys. Conf. Series. 891(1) Article 012289 (2017). https://doi.org/10.1088/1742-6596/891/1/012289

    Google Scholar 

  7. Antipov, K.V., Maslakov, M.P., Yurenko, K.I.: Improvement of the automated control systems for the development of the metallurgy. Procedia Eng. 129, 1010–1014 (2015). https://doi.org/10.1016/j.proeng.2015.12.164

    Article  Google Scholar 

  8. Bozhko, A.: Math modeling of sequential coherent and linear assembly plans in CAD systems. Global Smart Indus. Conf. (GloSIC) 2018, 1–5 (2018). https://doi.org/10.1109/GloSIC.2018.8570090

    Article  Google Scholar 

  9. Skvortsov, V., Proletarsky, A., Arzybaev, A.: Feature recognition module of the CAPP system. In: Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus (2019). http://dx.doi.org/10.1109/EIConRus.2019.8656655

  10. Xu, P., Wang, Z., Li, V.: Prognostics and health management (PHM) system requirements and validation. In: 2010 Prognostics and System Health Management Conference. Macao, pp. 1–4 (2010). https://doi.org/10.1109/phm.2010.5413560

  11. Loh, B.K., Koo, K.L., Ho, K.F., Idrus, R.: A review of customer relationship management system benefits and implementation in small and medium enterprises. In: Proceedings of the 12th WSEAS International Conference on Mathematics and Computers in Biology, Business and Acoustics, pp. 247–253 (2011)

    Google Scholar 

  12. Tai, L., Liu, M.: Deep-learning in mobile robotics—from perception to control systems: a survey on why and why not. CoRR, abs/1612.07139 (2016)

    Google Scholar 

  13. Poldrack, R.A., Farah, M.J.: Progress and challenges in probing the human brain. Nature 526, 371–379 (2015)

    Article  Google Scholar 

  14. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  15. Bernstein, N.A.: The current problems of modern neurophysiology. In: Sporns, O., Edelman, G.M. (eds.) Bernstein’s Dynamic View of the Brain: The Current Problems of Modem Neurophysiology. Motor Control. 2(4), 285–299 (1998). (Original work published 1945)

    Google Scholar 

  16. Bongaardt, R., Meijer, O.G.: Bernstein’s theory of movement behavior: historical development and contemporary relevance. J. Mot. Behav. 32(1), 57–71 (2000)

    Article  Google Scholar 

  17. Vitor, L.S., Turvey, M.T.: Bernstein’s levels of movement construction: a contemporary perspective. Hum. Movement Sci. 57, 111–133 (2018). https://doi.org/10.1016/j.humov.2017.11.013

    Article  Google Scholar 

  18. Suyatinov, S.: Bernstein’s theory of levels and its application for assessing the human operator state. In: Dolinina O. et al. (eds.) Recent Research in Control Engineering and Decision Making. ICIT-2019. Studies in Systems, Decision and Control, vol. 199, pp. 298–312. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12072-6_25

    Chapter  Google Scholar 

  19. Alexandrov, A.V., Frolov, A.A., Mergner, T., Hettich, G., Frolov, A.M.: Movement control in anthropomorphic robot using a human inspired eigenmovement concept. Russian J. Biomech. 22(1), 48–61 (2018). https://doi.org/10.15593/RJBiomech/2018.1.05

    Article  Google Scholar 

  20. Shen, K., Selezneva, M.S., Neusypin, K.A., Proletarsky, A.V.: Novel variable structure measurement system with intelligent components for flight vehicles. Metrol. Meas. Syst. 24(2), 347–356 (2017)

    Article  Google Scholar 

  21. Buldakova, T.I, Suyatinov, S.I.: The significance of interdisciplinary projects in becoming a research engineer. In: Smirnova, E.V., Clark, R.P. (eds.) Handbook of Research on Engineering Education in a Global Context, pp. 243–253. IGI Global, Hershey, PA (2019). https://doi.org/10.4018/978-1-5225-3395-5.ch022

  22. Buldakova, T.I., Dzhalolov, A.S.: Analysis of data processes and choices of data-processing and security technologies in situation centers. Sci. Technical Info. Process. 39(2), 127–132 (2012). https://doi.org/10.3103/S0147688212020116

    Article  Google Scholar 

  23. Zubov, N.E., Li, M.V., Mikrin, E.A., Ryabchenko, V.N.: Terminal synthesis of orbital orientation for a spacecraft. J. Comput. Syst. Sci. Int. 56(4), 721–737 (2017). https://doi.org/10.1134/S1064230717040190

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Suyatinov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suyatinov, S.I. (2020). Conceptual Approach to Building a Digital Twin of the Production System. In: Kravets, A., Bolshakov, A., Shcherbakov, M. (eds) Cyber-Physical Systems: Advances in Design & Modelling. Studies in Systems, Decision and Control, vol 259. Springer, Cham. https://doi.org/10.1007/978-3-030-32579-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32579-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32578-7

  • Online ISBN: 978-3-030-32579-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics