Skip to main content

K-means Principal Geodesic Analysis on Riemannian Manifolds

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2019 (FTC 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1069))

Included in the following conference series:

Abstract

Principal geodesic analysis (PGA) has been proposed for data dimensionality reduction on manifolds. However, a single PGA model is limited to data with a single modality. In this paper, we are the first to propose a generalized K-means-PGA model on manifolds. This model can analyze multi-mode nonlinear data, which applies to more manifolds (Sphere, Kendall’s shape and Grassmannian). To show the applicability of our model, we apply our model to spherical, Kendall’s shape and Grassmannian manifolds. Our K-means-PGA model offers correct geometry geodesic recovery than K-means-PCA model. We also show shape variations from different clusters of human corpus callosum and mandible data. To demonstrate the efficiency of our model, we perform face recognition using ORL dataset. Our model has a higher accuracy (99.5%) than K-means-PCA model (95%) in Euclidean space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Source code is available at: https://github.com/heaventian93/Kmeans-Principal-Geodesic-Analysis.

  2. 2.

    https://sites.google.com/site/hpardoe/cc_abide.

References

  1. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  2. Timothy, F.C., Gareth, J.E., Christopher, J.T.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 681–685 (2001)

    Article  Google Scholar 

  3. Blanz, V., Vetter, T.: Face recognition based on fitting a 3D morphable model. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1063–1074 (2003)

    Article  Google Scholar 

  4. Basri, R., Jacobs, D.: Lambertian reflectance and linear subspaces. In: Proceedings Eighth IEEE International Conference on Computer Vision 2001. ICCV 2001, vol. 2, pp. 383–390. IEEE (2001)

    Google Scholar 

  5. Peter, N.B., David, J.K.: What is the set of images of an object under all possible illumination conditions? Int. J. Comput. Vision 28(3), 245–260 (1998)

    Article  MathSciNet  Google Scholar 

  6. William, A.P.S., Edwin, R.H.: Recovering facial shape using a statistical model of surface normal direction. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 1914–1930 (2006)

    Article  Google Scholar 

  7. William, A.P.S., Edwin, R.H.: Face recognition using 2.5D shape information. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1407–1414. IEEE (2006)

    Google Scholar 

  8. Yin, X., Liu, X.: Multi-task convolutional neural network for pose-invariant face recognition. IEEE Trans. Image Process. 27(2), 964–975 (2018)

    Article  MathSciNet  Google Scholar 

  9. Ding, C., Tao, D.: Trunk-branch ensemble convolutional neural networks for video-based face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 1002–1014 (2018)

    Article  Google Scholar 

  10. Fletcher, P.T., Lu, C., Pizer, S.M., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)

    Article  Google Scholar 

  11. Dickens, M.P., Smith, W.A.P., Wu, J., Hancock, E.R.: Face recognition using principal geodesic analysis and manifold learning. In: Iberian Conference on Pattern Recognition and Image Analysis, pp. 426–434. Springer (2007)

    Google Scholar 

  12. Pennec, X.: Probabilities and statistics on Riemannian manifolds: a geometric approach. PhD thesis, INRIA (2004)

    Google Scholar 

  13. Jing, W., William, A.P.S., Edwin, R.H.: Weighted principal geodesic analysis for facial gender classification. In: Iberoamerican Congress on Pattern Recognition, pp. 331–339. Springer (2007)

    Google Scholar 

  14. Perdigão do Carmo, M.: Riemannian Geometry. Birkhauser (1992)

    Google Scholar 

  15. Gallier, J.: Notes on differential geometry and lie groups (2012)

    Google Scholar 

  16. Pennec, X.: Statistical computing on manifolds: from Riemannian geometry to computational anatomy. In: Emerging Trends in Visual Computing, pp. 347–386. Springer (2009)

    Google Scholar 

  17. Zhang, M., Fletcher, P.T.: Probabilistic principal geodesic analysis. In: Advances in Neural Information Processing Systems, pp. 1178–1186 (2013)

    Google Scholar 

  18. David, G.K.: Shape manifolds, procrustean metrics, and complex projective spaces. Bull. Lond. Math. Soc. 16(2), 81–121 (1984)

    Article  MathSciNet  Google Scholar 

  19. John, C.G.: Generalized procrustes analysis. Psychometrika 40(1), 33–51 (1975)

    Article  MathSciNet  Google Scholar 

  20. Kyle, A.G., Anuj, S., Xiuwen, L., Paul Van, D.: Efficient algorithms for inferences on Grassmann manifolds. In: 2003 IEEE Workshop on Statistical Signal Processing, pp. 315–318. IEEE (2003)

    Google Scholar 

  21. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998)

    Article  MathSciNet  Google Scholar 

  22. Absil, P.-A., Mahony, R., Sepulchre, R.: Riemannian geometry of Grassmann manifolds with a view on algorithmic computation. Acta Applicandae Mathematica 80(2), 199–220 (2004)

    Article  MathSciNet  Google Scholar 

  23. Moo, K.C., Anqi, Q., Seongho, S., Houri, K.V.: Unified heat Kernel regression for diffusion, Kernel smoothing and wavelets on manifolds and its application to mandible growth modeling in CT images. Med. Image Anal. 22(1), 63–76 (2015)

    Article  Google Scholar 

  24. Guodong, G., Stan, Z.L., Kapluk, C.: Face recognition by support vector machines. In: Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition 2000, pp. 196–201. IEEE (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youshan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y. (2020). K-means Principal Geodesic Analysis on Riemannian Manifolds. In: Arai, K., Bhatia, R., Kapoor, S. (eds) Proceedings of the Future Technologies Conference (FTC) 2019. FTC 2019. Advances in Intelligent Systems and Computing, vol 1069. Springer, Cham. https://doi.org/10.1007/978-3-030-32520-6_42

Download citation

Publish with us

Policies and ethics