Skip to main content

Part of the book series: Signals and Communication Technology ((SCT))

  • 693 Accesses

Abstract

Efficient and application-oriented analog-to-digital conversion (ADC) plays a key role on the performance of any communication system. Among the different available architectures, there exists a trade-off between sampling rate and resolution, both also related to the power consumption of the device. In addition, nonlinear distortion can severely reduce the digital dynamic range of the converted signal, thus reducing the effective resolution with the corresponding negative effect on the receiver sensitivity. In this sense, the selection and development of accurate models and compensation strategies are required to restore adequate performance. For example, the complexity of the models and compensation algorithms must also be considered in order to achieve an efficient solution. While ADCs used to sample narrowband signals have little memory effects and allow for simple models and compensation techniques, sampling of broadband signals introduces longer memory effects and more complex nonlinear dynamic models are required (Volterra, piece-wise linear models). Finally, adequate ADC performance metrics and figures of merit have to be carefully chosen to evaluate the quality of the compensation for the application at hand, as well as the measurement set-up and validation tests. In this chapter, we describe several of the available ADC architectures in terms of the achievable resolution and sampling rate, and the trade-off between them. Narrowband as well as wideband modeling and compensation techniques are described and proposed, depending on the particular ADC and the application at hand. Measurement related issues are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Unlike the concept of a dither signal discussed earlier as a pseudo-random noise added at the input of an ADC in order to de-correlate the quantization noise from the analog input signal to it, the same technique is used in control of nonlinear systems but with a different objective. In this case, a high frequency sinusoidal signal is used to change the behavior of a nonlinearity in such a way that an averaging effect takes place. This is due to the convolution between the nonlinearity and the amplitude distribution of the sinusoidal signal. It can be shown that the nonlinear element, usually a strong or discontinuous nonlinearity, behaves as a smoother nonlinear element in the lower frequency range. Here, we use the second interpretation of dithering.

  2. 2.

    For example, a flash analog-to-digital converter is a natural choice because of the high sampling rate of the system and the low resolution required [34].

  3. 3.

    A similar approach was used in [33] to model the dynamic nonlinearities in a radio frequency power amplifier (RF PA).

References

  1. R. Van de Plassche, CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters (Kluwer Academic, Dordrecht, 2003)

    Book  Google Scholar 

  2. A. Buchwald, High-speed time interleaved ADCs. IEEE Commun. Mag. 54(4), 71–77 (2016)

    Article  Google Scholar 

  3. L.D. Vito, H. Lundin, S. Rapuano, Bayesian calibration of a lookup table for ADC error correction. IEEE Trans. Instrum. Meas. 56(3), 873–878 (2007)

    Article  Google Scholar 

  4. F.H. Irons, D.M. Hummels, S.P. Kennedy, Improved compensation for analog-to-digital converters. IEEE Trans. Circuits Syst. 38(8), 958–961 (1991)

    Article  Google Scholar 

  5. C. Huang, H. Ting, S. Chang, Analysis of nonideal behaviors based on INL/DNL plots for SAR ADCs. IEEE Trans. Instrum. Meas. 65(8), 1804–1817 (2016)

    Article  Google Scholar 

  6. S. Medawar, B. Murmann, P. H’́andel, N. Bj’́orsell, M. Jansson, Static integral nonlinearity modeling and calibration of measured and synthetic pipeline analog-to-digital converters. IEEE Trans. Instrum. Meas. 63(3), 502–511 (2014)

    Article  Google Scholar 

  7. N. Bjorsell, Modeling Analog to Digital Converters at Radio Frequency, Doctoral Thesis in Telecommunications, Stockholm, Sweden (2007)

    Google Scholar 

  8. ADSP-2148X, One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A. Analog Devices Inc. (2010)

    Google Scholar 

  9. H.F. Lundin, Characterization and Correction of Analog-to-digital Converters, Ph.D. Thesis, KTH, Stockholm, Sweden (2005)

    Google Scholar 

  10. S. Medawar, P. Handel, N. Bjorsell, M. Jansson, Postcorrection of pipelined analog-digital converters based on input-dependent integral nonlinearity modeling. IEEE Trans. Instrum. Meas. 60(10), 3342–3350 (2011)

    Article  Google Scholar 

  11. S. Ponnuru, M. Seo, U. Madhow, M. Rodwell, Joint mismatch and channel compensation for high-speed OFDM receivers with time-interleaved ADCs. IEEE Trans. Comm. 58(8), 2391–2401 (2010)

    Article  Google Scholar 

  12. P. Benabes, C. Lelandais-Perrault, N.L. Dortz, Mismatch calibration methods for high-speed time-interleaved ADCs, in 2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS) (2014), pp. 49–52

    Google Scholar 

  13. C.A. Schmidt, J.E. Cousseau, J.L. Figueroa, B.T. Reyes, M.R. Hueda, Efficient estimation and correction of mismatch errors in time-interleaved ADCs. IEEE Trans. Instrum. Meas. 65(2), 243–254 (2016)

    Article  Google Scholar 

  14. C.A Schmidt, O. Lifschitz, J.E. Cousseau, J.L. Figueroa, P. Julian, Methodology and measurement setup for analog-to-digital converter postcompensation. IEEE Trans. Instrum. Meas. 63(3), 658–666 (2014)

    Article  Google Scholar 

  15. J. Elbornsson, F. Gustafsson, J. Eklund, Blind equalization of time errors in a time-interleaved ADC system. IEEE Trans. Signal Process. 53(4), 1413–1424 (2005)

    Article  MathSciNet  Google Scholar 

  16. Y. Qiu, Y.J. Liu, J. Zhou, G. Zhang, D. Chen, N. Du, All-digital blind background calibration technique for any channel time-interleaved ADC. IEEE Trans. Circuits Syst. Regul. Pap. PP(99), 1–12 (2018)

    Google Scholar 

  17. C. Schmidt, J.E. Cousseau, J.L. Figueroa, R. Wichman, S. Werner, Characterization and compensation of nonlinearities in a continuous-time first-order ADC, in 2010 IEEE International Microwave Workshop Series on RF Front-ends for Software Defined and Cognitive Radio Solutions (IMWS) (2010), pp. 1–4

    Google Scholar 

  18. C.A. Schmidt, J.E. Cousseau, J.L. Figueroa, R. Wichman, S. Werner, Non-linearities modelling and post-compensation in continuous-time σδ modulators. IET Microwaves Antennas Propag.5(15), 1796–1804 (2011)

    Article  Google Scholar 

  19. C.A. Schmidt, J.L. Figueroa, J.E. Cousseau, A.M. Tonello, Pilot-based TI-ADC mismatch error calibration for IR-UWB receivers. IEEE Access 7, 74340–74350 (2019)

    Article  Google Scholar 

  20. M. Schetzen, The Volterra and Wiener theories of Nonlinear Systems (John Wiley and Sons Inc., New York, 1980)

    MATH  Google Scholar 

  21. F.J. Doyle, R.K. Pearson, Identification and Control Using Volterra Models (Springer, London, 2002)

    Book  Google Scholar 

  22. S. Boyd, L.O. Chua, Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Trans. Circuits Syst. 32(11), 1150–1161 (1985)

    Article  MathSciNet  Google Scholar 

  23. I. Ryan, H. Mahdi, An oversampled rate converter using sigma delta noise shaping, in IET Irish Signals and Systems Conference, Dublin (2009), pp. 1–6

    Google Scholar 

  24. E. Bonizzoni, A.P. Perez, F. Maloberti, M. Garcia-Andrade, Third-order σ − δ modulator with 61-db SNR and 6-MHz bandwidth consuming 6 mW, in 34th European Solid-State Circuits Conference, Edinburgh (2008), pp. 218–221

    Google Scholar 

  25. T-S. Jeong, W. Choi, J. Gi, C. Yoo, Low voltage analog digital converter using sigma-delta modulator, in International SoC Design Conference, Busan (2008), pp. III52–III53

    Google Scholar 

  26. W-L. Yang, W-H. Hsieh, C-C. Hung, A third-order continuous-time sigma-delta modulator for Bluetooth, in International Symposium on VLSI Design, Automation and Test, Hsinchu (2009), pp. 247–250

    Google Scholar 

  27. A. Morgado, R. del Rio, J.M. de la Rosa, F. Medeiro, B. Perez-Verdu, F.V. Fernandez, A. Rodriguez-Vazquez, Reconfiguration of cascade sigma delta modulators for multistandard GSM/Bluetooth/UMTS/WLAN transceivers, in IEEE International Symposium on Circuits and Systems, Island of Kos (2006), pp. 1884–1887

    Google Scholar 

  28. B.R. Jose, P. Mythili, J. Singh, J. Mathew, A triple-mode sigma-delta modulator design for wireless standards, in 10th International Conference on Information Technology, Orissa (2007), pp. 17–20

    Google Scholar 

  29. A. Leuciuc, On the nonlinearity of integrators in continuous-time delta-sigma modulators, in IEEE Midwest Symposium on Circuits and Systems, Dayton (2001), pp. 862–865

    Google Scholar 

  30. S. Pavan, Efficient simulation of weak nonlinearities in continuous-time oversampling converters. IEEE Trans. Circuits Syst. 57(8), 1925–1934 (2010)

    Article  MathSciNet  Google Scholar 

  31. P. Sankar, S. Pavan, Analysis of integrator nonlinearity in a class of continuous-time delta-sigma modulators. IEEE Trans. Circuits Syst. 54(12), 1150–1161 (2007)

    Article  Google Scholar 

  32. T. Karema, T. Ritoniemi, H. Tenhunen, Intermodulation in sigma-delta D/A converters, in IEEE International Symposium on Circuits and Systems, Montreal (1991), pp. 1625–1628

    Google Scholar 

  33. M. Keramat, Functionality of quantization noise in sigma-delta modulators, in IEEE Midwest Symposium on Circuits and Systems, Lansing (2000), pp. 912–915

    Google Scholar 

  34. L. Samid, Y. Manoli, A multibit continuous time sigma delta modulator with successive-approximation quantizer, in IEEE International Symposium on Circuits and Systems, Island of Kos (2006), pp. 2965–2968

    Google Scholar 

  35. D.R. Morgan, Z. Ma, J. Kim, M.G. Zierdt, J. Pastalan, A generalized memory polynomial model for digital predistortion of RF power amplifiers. IEEE Trans. Circuits Syst. 54(10), 3852–3860 (2006)

    MATH  Google Scholar 

  36. J.C. Gómez, E. Baeyens, Identification of block-oriented nonlinear systems using orthonormal bases. J. Process Control 14(6), 685–697 (2003)

    Article  Google Scholar 

  37. P. Nikaeen, B. Murmann, Digital compensation of dynamic acquisition errors at the front-end of high-performance A/D converters. IEEE J. Sel. Top. Sign. Proces. 3(3), 499–508 (2009)

    Article  Google Scholar 

  38. ADSP-2148X, One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A. Analog Devices Inc. (2010)

    Google Scholar 

  39. F. Centurelli, P. Monsurr, F. Rosato, D. Ruscio, A. Trifiletti, Calibration of pipeline ADC with pruned Volterra kernels. Electron. Lett. 52(16), 1370–1371 (2016)

    Article  Google Scholar 

  40. S.M.R. Islam, N. Avazov, O.A. Dobre, K.S. Kwak, Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges. IEEE Commun. Surv. Tutorials PP(99), 1–1 (2016)

    Google Scholar 

  41. B.T. Reyes, R.M. Sanchez, A.L. Pola, M.R. Hueda, Design and experimental evaluation of a time-interleaved ADC calibration algorithm for application in high-speed communication systems. IEEE Trans. Circuits Syst. Regul. Pap. 64(5), 1019–1030 (2017)

    Article  Google Scholar 

  42. C.R. Anderson, S. Venkatesh, J.E. Ibrahim, R.M. Buehrer, J.H. Reed, Analysis and implementation of a time-interleaved ADC array for a software-defined UWB receiver. IEEE Trans. Veh. Technol. 58(8), 4046–4063 (2009)

    Article  Google Scholar 

  43. V.T.D. Huynh, N. Noels, H. Steendam, Offset mismatch calibration for TI-ADCs in high-speed OFDM systems, in 2015 IEEE Symposium on Communications and Vehicular Technology in the Benelux (SCVT) (2015), pp. 1–5

    Google Scholar 

  44. S.K. Sindhi, K.M.M. Prabhu, Reconstruction of N-th order nonuniformly sampled bandlimited signals using digital filter banks. Digital Signal Process. 23, 1877–1886 (2013)

    Article  Google Scholar 

  45. J. Elbornsson, F. Gustafsson, J.E. Eklund, Blind adaptive equalization of mismatch errors in a time-interleaved A/D converter system. IEEE Trans. Circuits Syst. Regul. Pap. 51(1), 151–158 (2004)

    Article  Google Scholar 

  46. C. Vogel, H. Johansson, Time-interleaved analog-to-digital converters: status and future directions, in 2006 Proceedings of IEEE International Symposium on Circuits and Systems, 2006. ISCAS 2006 (2006), 3386–3389

    Google Scholar 

  47. C. Vogel, M. Hotz, S. Saleem, K. Hausmair, M. Soudan, A review on low-complexity structures and algorithms for the correction of mismatch errors in time-interleaved ADCs, in 2012 IEEE 10th International New Circuits and Systems Conference (NEWCAS) (2012), pp. 349–352

    Google Scholar 

  48. S. Chen, L. Wang, H. Zhang, R. Murugesu, D. Dunwell, A.C. Carusone, All-digital calibration of timing mismatch error in time-interleaved analog-to-digital converters. IEEE Trans. Very Large Scale Integr. VLSI Syst. 25(9), 2552–2560 (2017)

    Article  Google Scholar 

  49. S. Kwon, S. Lee, J. Kim, A joint timing synchronization, channel estimation, and SFD detection for IR-UWB systems. J. Commun. Networks 14(5), 501–509 (2012)

    Article  Google Scholar 

  50. P.P. Vaidyanathan, Multirate Systems and Filter Banks (Prentice Hall PTR, Englewood Cliffs, 1993)

    Google Scholar 

  51. T.I. Laakso, V. Valimaki, M. Karjalainen, U.K. Laine, Splitting the unit delay [FIR/all pass filters design]. IEEE Signal Process. Mag. 13(1), 30–60 (1996)

    Article  Google Scholar 

  52. G. Qin, G. Liu, M. Gao, X. Fu, P. Xu, Correction of sample-time error for time-interleaved sampling system using cubic spline interpolation. Metrol. Measur. Syst. 21(3), 485–496 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gregorio, F., González, G., Schmidt, C., Cousseau, J. (2020). ADC in Broadband Communications. In: Signal Processing Techniques for Power Efficient Wireless Communication Systems. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-32437-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32437-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32436-0

  • Online ISBN: 978-3-030-32437-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics