Skip to main content

Bioindicators of Soil Quality in Mixed Plantations of Eucalyptus and Leguminous Trees

  • Chapter
  • First Online:

Abstract

The introduction of N2-fixing trees in Eucalyptus forest systems is a recent strategy that can improve the ecosystem survival and promote a more sustainable environment. In these systems, there is a strong interconnection between the trees, due to a complex network of interactions between microorganisms, above- and belowground. These interactions result in innumerable biological functions and ecosystem services, which are essential for soil and plant health. Our aim was to explore the major bioindicators of soil quality in pure and mixed Eucalyptus grandis and Acacia mangium plantations. Our efforts focused on the applications, challenges, and recent results obtained in such plantations in Brazilian conditions. We also give details regarding nutrient cycling in the soil and litter interface, and its close relationship with carbon (C), nitrogen (N), and phosphorus (P) dynamics. We believe that holistic approaches that permit to explore the bioindicators in mixed-plant systems of high ecological value (Acacia) and high economic value (Eucalyptus) will be inevitable in the near future. Thus, we can improve important processes mediated by these bioindicators involved in the interactions, and we will take an important step towards overcoming the current resource constraints, combining increased productivity with the ecological intensification of forest plantations with environmental sustainability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adhikari K, Hartemink AE (2016) Linking soils to ecosystem services—a global review. Geoderma 262:101–111

    Article  CAS  Google Scholar 

  • Aggangan NS, Moon HK, Han SH (2010) Growth response of Acacia mangium Willd. seedlings to arbuscular mycorrhizal fungi and four isolates of the ectomycorrhizal fungus Pisolithus tinctorius (Pers.) Coker and Couch. New For 39(2):215–230

    Article  Google Scholar 

  • Augusto L, De Schrijver A, Vesterdal L, Smolander A, Prescott C, Ranger J (2015) Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biol Rev 90:444–466

    Article  PubMed  Google Scholar 

  • Bachega LR, Bouillet JP, Piccolo MC, Saint-André L, Bouvet JM, Nouvellon Y, Gonçalves JLM, Robin A, Laclau JP (2016) Decomposition of Eucalyptus grandis and Acacia mangium leaves and fine roots in tropical conditions did not meet the home field advantage hypothesis. For Ecol Manag 359:33–43

    Article  Google Scholar 

  • Bahram M, Kohout P, Anslan S, Harend H, Abarenkov K, Tedersoo L (2016) Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. ISME J 10:885–896

    Article  PubMed  Google Scholar 

  • Baldrian P (2017) Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol Rev 41:109–130

    CAS  PubMed  Google Scholar 

  • Barreto PAB (2008) Activity, carbon and nitrogen of microbial biomass in eucalypt plantations in an age sequence. Rev Bras Cienc Solo 32:611–619

    Article  Google Scholar 

  • Bender SF, Wagg C, van der Heijden MGA (2016) An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evol 31:440–452

    Article  PubMed  Google Scholar 

  • Bini D, Santos CA, Bouillet JPP, Gonçalves JLM, Cardoso EJBN (2013a) Eucalyptus grandis and Acacia mangium in monoculture and intercropped plantations: evolution of soil and litter microbial and chemical attributes during early stages of plant development. Appl Soil Ecol 63:57–66. https://doi.org/10.1016/j.apsoil.2012.09.012

  • Bini D, Figueiredo AF, da Silva MCP, Vasconcellos RLF, Cardoso EJBN (2013b) Microbial biomass and activity in litter during the initial development of pure and mixed plantations of Eucalyptus grandis and Acacia mangium. Rev Bras Cienc Solo 37(1):76–85

    Article  CAS  Google Scholar 

  • Bini D, Santos CA, Silva MCP, Bonfim JA, Cardoso EJBN (2018) Intercropping Acacia mangium stimulates AMF colonization and soil phosphatase activity in Eucalyptus grandis. Sci Agric 75:102–110

    Article  CAS  Google Scholar 

  • Binkley D (1992) Mixtures of nitrogen-fixing and non-nitrogen-fixing tree species. In: Cannell MGR, Malcom DC, Robertson PA (eds) The ecology of mixed-species stands of trees. Blackwell Scientific Publications, Oxford, pp 99–123

    Google Scholar 

  • Bouillet JP, Laclau JP, Gonçalves JLM, Moreira MZMR, Trivelin PCO, Jourdan C, Silva EV, Piccolo MC, Tsai SM, Galiana A, Bouillet JP, Gonçalves JLM, Silva EV, Jourdan C, Cunha MCS, Moreira MZMR, Saint-André L, Maquère V, Nouvellon Y, Ranger J, Gonçalves JLM, Silva EV, Jourdan C, Cunha MCS, Moreira MZMR, Saint-André L, Maquere V, Nouvellon Y, Ranger J (2008). Mixed-species plantations of Acacia mangium and Eucalyptus grandis in Brazil. For Ecol Manag 255:3905–3917. https://doi.org/10.1016/j.foreco.2007.10.049

  • Bünemann EK, Bongiorno G, Bai Z, Creamer RE, De Deyn G, de Goede R, Pulleman M (2018) Soil quality–a critical review. Soil Biol Biochem 120:105–125

    Article  CAS  Google Scholar 

  • Brady NC, Weil RR (2009) Elements of the Nature and Properties of Soils. 3rd Ed. Pearson Education, Upper Saddle River, NJ, USA

    Google Scholar 

  • Cardoso EJBN, Nogueira LR, Vasconcellos F, Bini D, Yumi M, Miyauchi H, Alcantara C, Roger P, Alves L, Paula AM, Nakatani AS, Vasconcellos RLF, Bini D, Miyauchi MYH, Santos CA, Alves PRL, Paula AM, Nakatani AS, Pereira JM, Nogueira MA (2013) Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Sci Agric 70:274–289

    Article  Google Scholar 

  • Chalk PM, Peoples MB, McNeill AM, Boddey RM, Unkovich MJ, Gardener MJ, Silva CF, Chen D (2014) Methodologies for estimating nitrogen transfer between legumes and companion species in agro-ecosystems: a review of 15N-enriched techniques. Soil Biol Biochem 73:10–21

    Article  CAS  Google Scholar 

  • Churchland C, Grayston SJ (2014) Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling. Front Microbiol 5:1–20

    Article  Google Scholar 

  • Cole DW, Rapp M (1980) Elemental cycling in forested ecosystems. In: Dynamic properties of forest ecosystems. Cambridge University, Cambridge, pp 341–409

    Google Scholar 

  • Coleman DC, Whitman WB (2005) Linking species richness, biodiversity and ecosystem function in soil systems. Pedobiologia 49:479–497

    Article  CAS  Google Scholar 

  • Crowther TW, Glick HB, Covey KR, Bettigole C, Maynard DS, Thomas SM, Smith JR, Hintler G, Duguid MC, Amatulli G, Tuanmu MN, Jetz W, Salas C, Stam C, Piotto D, Tavani R, Green S, Bruce G, Williams SJ, Wiser SK, Huber MO, Hengeveld GM, Nabuurs GJ, Tikhonova E, Borchardt P, Li CF, Powrie LW, Fischer M, Hemp A, Homeier J, Cho P, Vibrans AC, Umunay PM, Piao SL, Rowe CW, Ashton MS, Crane PR, Bradford MA (2015) Mapping tree density at a global scale. Nature 525:201–205

    Article  CAS  PubMed  Google Scholar 

  • Doran JW, Parkin TB (1994) Defining and assessing soil quality. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA (eds) Defining soil quality for a sustainable environment. SSSA, Madison, pp 3–21

    Chapter  Google Scholar 

  • Doran JW, Parkin TB (1996) Quantitative indicators of soil quality: a minimum data set. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. SSSA, Madison, pp 25–37

    Google Scholar 

  • Drobnik T, Greiner L, Keller A, Grêt-Regamey A (2018) Soil quality indicators—from soil functions to ecosystem services. Ecol Indic 94:151–169

    Article  Google Scholar 

  • Eisenhauer N, Bowker MA, Grace JB, Powell JR (2015) From patterns to causal understanding: structural equation modeling (SEM) in soil ecology. Pedobiologia 58:65–72

    Article  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forrester DI, Bauhus J, Khanna PK (2004) Growth dynamics in a mixed-species plantation of Eucalyptus globulus and Acacia mearnsii. For Ecol Manag 193:81–95

    Article  Google Scholar 

  • Forrester DI, Bauhus J, Cowie AL (2005a) On the success and failure of mixed species tree plantations: lessons learned from a model system of Eucalyptus globulus and Acacia mearnsii. For Ecol Manag 209:147–155

    Article  Google Scholar 

  • Forrester DI, Bauhus J, Cowie AL (2005b) Nutrient cycling in a mixed-species plantation of Eucalyptus globulus and Acacia mearnsii. Can J For Res 35:2942–2950

    Article  Google Scholar 

  • Forrester DI, Bauhus J, Cowie AL, Vanclay JK (2006) Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. For Ecol Manag 233:211–230

    Article  Google Scholar 

  • Frey B, Schüpp H (1993) A role of vesicular-arbuscular (VA) mycorrhizal fungi in facilitating interplant nitrogen transfer. Soil Biol Biochem 25:651–658

    Article  Google Scholar 

  • Gama-rodrigues AC, Barros NF (2002) Ciclagem de nutrientes em floresta natural e em plantios de eucalipto e de dandá no sudeste da Bahia, Brasil. R Árvore 26:193–207

    CAS  Google Scholar 

  • Gama-Rodrigues EF, Gama-Rodrigues AC (1999) Biomassa microbiana e ciclagem de nutrientes. In: Santos GA, Silva LS, Canellas LP, Camargo FAO (eds) Fundamentos da matéria orgânica do solo: Ecossistemas tropicais e subtropicais. Gênesis, Porto Alegre, pp 159–1704

    Google Scholar 

  • Gama-Rodrigues EF, Barros NF, Viana AP, Santos GA (2008) Microbial biomass and activity in soil and forest litter of eucalyptus plantations and native vegetation in Southeastern Brazil. Ver Bras Cienc Solo 32:1489–1499

    Article  Google Scholar 

  • Gama-Rodrigues EF, Gama-Rodrigues AC, Barros NF, Moço MKS (2011) The relationships between microbiological attributes and soil and litter quality in pure and mixed stands of native tree species in southeastern Bahia, Brazil. Can J Microbiol 895:887–895

    Article  Google Scholar 

  • Greiner L, Keller A, Grêt-Regamey A, Papritz A (2017) Soil function assessment: review of methods for quantifying the contributions of soils to ecosystem services. Land Use Policy 69:224–223

    Article  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146

    Article  CAS  Google Scholar 

  • He XH, Critchley C, Bledsoe C (2003) Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit Rev Plant Sci 22:531–567

    Article  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Article  PubMed  Google Scholar 

  • Huang LF, Song LX, Xia XJ, Mao WH, Shi K, Zhou YH, Yu JQ (2013) Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture. J Chem Ecol 39:232–242

    Article  CAS  PubMed  Google Scholar 

  • Inagaki M, Kamo K, Miyamoto K, Titin J, Jamalung L, Lapongan J, Miura S (2011) Nitrogen and phosphorus retranslocation and N:P ratios of litterfall in three tropical plantations: luxurious N and efficient P use by Acacia mangium. Plant Soil 341:295–307

    Article  CAS  Google Scholar 

  • Jenkinson DS (1981) Microbial biomass in soil: measurement and turnover. Soil Biochem 5:415–471

    CAS  Google Scholar 

  • Jimu L, Kemler M, Mujuru L, Mwenje E (2017) Illumina DNA metabarcoding of Eucalyptus plantation soil reveals the presence of mycorrhizal and pathogenic fungi. Forestry Int J Forest Res 91(2):238–245

    Article  Google Scholar 

  • Kaschuk G, Alberton O, Hungria M (2010) Three decades of soil microbial biomass studies in Brazilian ecosystems: lessons learned about soil quality and indications for improving sustainability. Soil Biol Biochem 42(1):1–13

    Article  CAS  Google Scholar 

  • Khanna PK (1997) Comparison of growth and nutrition of young monocultures and mixed stands of Eucalyptus globulus and Acacia mearnsii. For Ecol Manag 94:105–113

    Article  Google Scholar 

  • Kirilenko AP, Sedjo RA (2007) Climate change impacts on forestry. Proc Natl Acad Sci U S A 104:19697–19702

    Article  PubMed  PubMed Central  Google Scholar 

  • Koutika LS, Mareschal L, Epron D (2016) Soil P availability under Eucalypt and acacia on Ferralic Arenosols, republic of the Congo. Geoderma 7(2):153–158

    Article  Google Scholar 

  • Laclau JP, Bouillet JP, Gonçalves JLM, Silva EV, Jourdan C, Cunha MCS, Moreira MR, Saint-André L, Maquere V, Nouvellon Y, Ranger J (2008) Mixed-species plantations of Acacia mangium and Eucalyptus grandis in Brazil. For Ecol Manag 255:3905–3917

    Article  Google Scholar 

  • Laclau JP, Ranger J, Gonçalves JLM, Maquère V, Krusche AV, M’Bou AT, Nouvellon Y, Saint-André L, Bouillet JP, Piccolo MC, Deleporte P (2010) Biogeochemical cycles of nutrients in tropical Eucalyptus plantations. Main features shown by intensive monitoring in Congo and Brazil. For Ecol Manag 259:1771–1785

    Article  Google Scholar 

  • Lal R (2014) Soil conservation and ecosystem services. Int Soil Water Conserv Res 2:36–47

    Article  Google Scholar 

  • Lal R (2015) Restoring soil quality to mitigate soil degradation. Sustainability 7:5875–5895

    Article  CAS  Google Scholar 

  • Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415

    Article  CAS  Google Scholar 

  • Lavelle P, Dugdale R, Scholes R, Berhe AA, Carpenter E, Codispoti L, Izac AM, Lemoalle J, Luizão F, Scholes M, Tréguer P, Ward B (2005) Nutrient cycling. In: Hassan RM, Scholes R, Neville A (eds) Millennium ecosystem assessment. Island Press, Washington, p 331

    Google Scholar 

  • Lavelle P, Decaëns T, Aubert M, Barot S, Blouin M, Bureau F, Margerie P, Mora P, Rossi JP (2006) Soil invertebrates and ecosystem services. Eur J Soil Biol 42:S3–S15

    Article  Google Scholar 

  • Li ZA, Peng SL, Rae DJ, Zhou GY (2001) Litter decomposition and nitrogen mineralization of soils in subtropical plantation forests of southern China, with special attention to comparisons between legumes and non-legumes. Plant Soil 229:105–116

    Article  CAS  Google Scholar 

  • Liang C, Schimel JP, Jastrow JD (2017) The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol 2:1–6

    Article  CAS  Google Scholar 

  • Mariotte P, Mehrabi Z, Bezemer TM, De Deyn GB, Kulmatiski A, Drigo B, Veen GF, van der Heijden MGA, Kardol P (2017) Plant-soil feedback: bridging natural and agricultural sciences. Trends Ecol Evol 33:129–142

    Article  PubMed  Google Scholar 

  • May BM, Attiwill PM (2003) Nitrogen fixation by Acacia dealbata and changes in soil properties 5 years after mechanical disturbance or slash-burning following timber harvest. For Ecol Manag 181(3):339–355

    Article  Google Scholar 

  • Mendes-Filho PF, Vasconcellos RLF, Paula AM, Cardoso EJBN (2009) Evaluating the potential of forest species under “microbial management” for the restoration of degraded mining areas. Water Air Soil Pollut 208:79–89

    Article  CAS  Google Scholar 

  • Mercês E, Soares B, Silva IR, Barros NF, Teixeira RS (2016) Soil organic matter fractions under second-rotation Eucalyptus plantations in eastern Rio Grande do Sul. Rev Árvore 41(1). https://doi.org/10.1590/1806-90882017000100007

  • Motavalli PP, Palm CA, Parton WJ, Elliott ET, Frey SD (1995) Soil pH and organic C dynamics in tropical forest soils: Evidence from laboratory and simulation studies. Soil Biol Biochem 27:1589–1599

    Article  CAS  Google Scholar 

  • Navarrete AA, Tsai SM, Mendes LW, Faust K, Hollander M, Cassman NA, Raes J, Veen JA, Kuramae EE (2015) Soil microbiome responses to the short-term effects of Amazonian deforestation. Mol Ecol 24:2433–2448

    Article  CAS  PubMed  Google Scholar 

  • Nygren P, Fernández M, Harmand JM, Leblanc H (2012) Symbiotic dinitrogen fixation by trees: an underestimated resource in agroforestry systems? Nutr Cycl Agroecosyst 94:123–160

    Article  Google Scholar 

  • Oliveira PHG, Gama-Rodrigues AC, Gama-Rodrigues EF, Sales MVS (2018) Litter and soil-related variation in functional group abundances in cacao agroforests using structural equation modeling. Ecol Indic 84:254–262

    Article  CAS  Google Scholar 

  • Pagano MC, Scotti MR (2008) Arbuscular and ectomycorrhizal colonization of two Eucalyptus species in semiarid Brazil. Mycoscience 49:379–384

    Article  CAS  Google Scholar 

  • Parrotta JA, Baker DD, Fried M (1996) Changes in dinitrogen fixation in maturing stands of Casuarina equisetifolia and Leucaena leucocephala. Can J For Res 26:1684–1691

    Article  Google Scholar 

  • Paul K, Polglase P, Bauhus J, Raison J, Khanna P (2004) Modeling change in litter and soil carbon following afforestation or reforestation: calibration of the FULLCAM ‘BETA’ model. National Carbon Accounting System Technical Report No. 40, Canberra, Australian Greenhouse Office

    Google Scholar 

  • Paula RR, Bouillet JP, Trivelin PCO, Zeller B, Gonçalves JLM, Nouvellon Y, Bouvet JM, Plassard C, Laclau JP (2015) Evidence of short-term belowground transfer of nitrogen from Acacia mangium to Eucalyptus grandis trees in a tropical planted forest. Soil Biol Biochem 91:99–108

    Article  CAS  Google Scholar 

  • Paula RR, Bouillet JP, Gonçalves JLM, Trivelin PCO, Balieiro FC, Nouvellon Y, Oliveira JC, Júnior JCD, Bordron B, Laclau JP (2018) Nitrogen fixation rate of Acacia mangium Wild at mid rotation in Brazil is higher in mixed plantations with Eucalyptus grandis Hill ex Maiden than in monocultures. Ann For Sci 75:14

    Article  Google Scholar 

  • Pereira APA, Andrade PAM, Bini D, Durrer A, Robin A, Bouillet JP, Andreote FD, Cardoso EJBN (2017) Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium. PLoS One 12:e0180371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira APA, Zagatto MRG, Brandani CB, Mescolotti DL, Cotta SR, Gonçalves JLM, Cardoso EJBN (2018a) Acacia changes microbial indicators and increases C and N in soil organic fractions in intercropped Eucalyptus plantations. Front Microbiol 9:1–13. https://doi.org/10.3389/fmicb.2018.00655

  • Pereira APA, Santana MC, Bonfim JA, de Lourdes Mescolotti D, Cardoso EJBN (2018b) Digging deeper to study the distribution of mycorrhizal arbuscular fungi along the soil profile in pure and mixed Eucalyptus grandis and Acacia mangium plantations. Appl Soil Ecol 128:1–11

    Article  Google Scholar 

  • Pereira APA, Durrer A, Gumiere T, Gonçalves JLM, Robin A, Bouillet JP, Wang J, Verma JP, Singh BK, Cardoso EJBN (2019) Mixed Eucalyptus plantations induce changes in microbial communities and increase biological functions in the soil and litter layers. For Ecol Manag 433:332–342

    Article  Google Scholar 

  • Prescott CE (2010) Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101:133–149

    Article  CAS  Google Scholar 

  • Prescott CE, Grayston SJ (2013) Tree species influence on microbial communities in litter and soil: current knowledge and research needs. For Ecol Manag 309:19–27

    Article  Google Scholar 

  • Rachid CTCC, Balieiro FC, Peixoto RS, Pinheiro YAS, Piccolo MC, Chaer GM, Rosado AS (2013) Mixed plantations can promote microbial integration and soil nitrate increases with changes in the N cycling genes. Soil Biol Biochem 66:146–153

    Article  CAS  Google Scholar 

  • Rachid CTCC, Balieiro FC, Fonseca ES, Peixoto RS, Chaer GM, Tiedje JM, Rosado AS (2015) Intercropped silviculture systems, a key to achieving soil fungal community management in eucalyptus plantations. PLoS One 10:1–13

    Article  CAS  Google Scholar 

  • Rahman MM, Tsukamoto J, Tokumoto Y, Shuvo MAR (2013) The role of quantitative traits of leaf litter on decomposition and nutrient cycling of the forest ecosystems. J For Environ Sci 29(1):38–48

    Google Scholar 

  • Richards AE, Forrester DI, Bauhus J, Scherer-Lorenzen M (2010) The influence of mixed tree plantations on the nutrition of individual species: a review. Tree Physiol 30(9):1192–1208

    Article  PubMed  Google Scholar 

  • Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  PubMed  Google Scholar 

  • Santos FM, Chaer GM, Diniz AR, Balieiro FC (2017) Nutrient cycling over five years of mixed-species plantations of Eucalyptus and Acacia on a sandy tropical soil. For Ecol Manag 384:110–121

    Article  Google Scholar 

  • Santos FM, Balieiro FC, Fontes MA, Chaer GM (2018) Understanding the enhanced litter decomposition of mixed-species plantations of Eucalyptus and Acacia mangium. Plant Soil 423:141–155

    Article  CAS  Google Scholar 

  • Simard WS, Jones MD, Durall DM (2003) Carbon and nutrient fluxes within and between mycorrhizal plants. In: Van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, pp 34–74

    Google Scholar 

  • Singh BK (2018) Soil carbon storage: modulators, mechanisms and modeling, 1st edn. Academic Press, London, p 340

    Google Scholar 

  • Smith JL, Paul EA, Bollag JM, Stotzky G (1990) The significance of soil microbial biomass estimations. Soil Biochemistry 6:357–396

    CAS  Google Scholar 

  • Šnajdr J, Dobiášová P, Urbanová M, Petránková M, Cajthaml T, Frouz J, Baldrian P (2013) Dominant trees affect microbial community composition and activity in post-mining afforested soils. Soil Biol Biochem 56:105–115

    Article  CAS  Google Scholar 

  • Snowdon P, Ryan P, Raison J (2005) National carbon accounting system technical report no. 45 Review of C:N ratios in vegetation, litter and soil under Australian native forests and plantations, p 72

    Google Scholar 

  • Steidinger BS, Crowther TW, Liang J, Van Nuland ME, Werner GD, Reich PB, Nabuurs G, de-Miguel S, Zhou M, Picard N, Herault B, Zhao X, Zhang C, Routh D, Peay KG, GFBI consortium (2019) Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569:404–408

    Article  CAS  PubMed  Google Scholar 

  • Štursová M, Bárta J, Šantrůčková H, Baldrian P (2016) Small-scale spatial heterogeneity of ecosystem properties, microbial community composition and microbial activities in a temperate mountain forest soil. FEMS Microbiol Ecol 92(12):fiw185

    Article  CAS  PubMed  Google Scholar 

  • Switzer GL, Nelson LE (1972) Nutrient accumulation and cycling in Loblolly Pine (Pinus taeda) plantation ecosystems: the first 20 years. SSSA 36:143–147

    Article  CAS  Google Scholar 

  • Taylor BN, Chazdon RL, Bachelot B, Menge DNL (2017) Nitrogen-fixing trees inhibit growth of regenerating Costa Rican rainforests. Proc Natl Acad Sci U S A 114(33):8817–8822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tchichelle SV, Epron D, Mialoundama F, Koutika LS, Harmand JM, Bouillet JP, Mareschal L (2017a) Differences in nitrogen cycling and soil mineralization between a eucalypt plantation and a mixed Eucalypt and Acacia mangium plantation on a sandy tropical soil. South For J For Sci 79(1):1–8

    Article  Google Scholar 

  • Tchichelle SV, Mareschal L, Koutika LS, Epron D (2017b) Biomass production, nitrogen accumulation and symbiotic nitrogen fixation in a mixed-species plantation of eucalypt and acacia on a nutrient-poor tropical soil. For Ecol Manag 403:103–111

    Article  Google Scholar 

  • Tedersoo L, Bahram M, Cajthaml T, Põlme S, Hiiesalu I, Anslan S, Harend H, Buegger F, Pritsch K, Koricheva J, Abarenkov K (2016) Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. ISME J 10:346–362

    Article  CAS  PubMed  Google Scholar 

  • Trumbore S, Brando P, Hartmann H, Gauthier S, Bernier P, Kuuluvainen T, Shvidenko AZ, Schepaschenko DG (2015) Boreal forest health and global change. Science 349:819–822

    Article  CAS  Google Scholar 

  • Urbanová M, Šnajdr J, Baldrian P (2015) Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol Biochem 84:53–64

    Article  CAS  Google Scholar 

  • Van Der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Voigtlaender M, Laclau JP, de Gonçalves JLM, Piccolo MC, Moreira MZ, Nouvellon Y, Ranger J, Bouillet JP (2012) Introducing Acacia mangium trees in Eucalyptus grandis plantations: consequences for soil organic matter stocks and nitrogen mineralization. Plant Soil 352(1-2):99–111

    Article  CAS  Google Scholar 

  • Wang GZ, Li HG, Christie P, Zhang FS, Zhang JL, Bever JD (2017) Plant-soil feedback contributes to intercropping overyielding by reducing the negative effect of take-all on wheat and compensating the growth of faba bean. Plant Soil 415:1–12

    Article  CAS  Google Scholar 

  • Ward BB, Jensen MM (2014) The microbial nitrogen cycle. Front Microbiol 5:2–3

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomonas JN, Setala H, Van Der Putten WH, Wall DH (2004) Belowground biota ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Wedderburn ME, Carter J (1999) Litter decomposition by four functional tree types for use in silvopastoral systems. Soil Biol Biochem 31:455–461

    Article  CAS  Google Scholar 

  • Zagatto MRG, Pereira AP, Souza AJ, Pereira RF, Baldesin LF, Pereira CM, Lopes RV, Cardoso EJBN (2019) Interactions between mesofauna, microbiological and chemical soil attributes in pure and intercropped Eucalyptus grandis and Acacia mangium plantations. For Ecol Manag 433:240–247

    Article  Google Scholar 

  • Zaia FC, Gama-Rodrigues AC, Gama-Rodrigues EF, Moço MKS, Machado RCR, Baligar VC (2012) Carbon, nitrogen, organic phosphorus, microbial biomass and N mineralization in soils under cacao agroforestry systems in Bahia, Brazil. Agrofor Syst 86:197–212

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Prudêncio de Araujo Pereira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pereira, A.P.d.A., Bini, D., Rodrigues, E.G., Santana, M.C., Bran Nogueira Cardoso, E.J. (2020). Bioindicators of Soil Quality in Mixed Plantations of Eucalyptus and Leguminous Trees. In: Bran Nogueira Cardoso, E., Gonçalves, J., Balieiro, F., Franco, A. (eds) Mixed Plantations of Eucalyptus and Leguminous Trees. Springer, Cham. https://doi.org/10.1007/978-3-030-32365-3_9

Download citation

Publish with us

Policies and ethics