Skip to main content

Hausdorff Dimension, Projections, Intersections, and Besicovitch Sets

  • Chapter
  • First Online:

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

This is a survey on recent developments on the Hausdorff dimension of projections and intersections for general subsets of Euclidean spaces, with an emphasis on estimates of the Hausdorff dimension of exceptional sets and on restricted projection families. We shall also discuss relations between projections and Hausdorff dimension of Besicovitch sets.

The author was supported by the Academy of Finland through the Finnish Center of Excellence in Analysis and Dynamics Research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Z.M. Balogh, E. Durand-Cartagena, K. Fässler, P. Mattila, J.T. Tyson, The effect of projections on dimension in the Heisenberg group. Rev. Mat. Iberoam. 29, 381–432 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Z.M. Balogh, K. Fässler, P. Mattila, J.T. Tyson, Projection and slicing theorems in Heisenberg groups. Adv. Math. 231, 569–604 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Z.M. Balogh, A. Iseli, Dimension distortion by projections on Riemannian surfaces of constant curvature. Proc. Amer. Math. Soc. 144, 2939–2951 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Z.M. Balogh, A. Iseli. Marstrand type projection theorems for normed spaces, to appear in J. Fractal Geom

    Google Scholar 

  5. V. Beresnevich, K.J. Falconer, S. Velani, A. Zafeiropoulos, Marstrand’s Theorem Revisited: Projecting Sets of Dimension Zero, arXiv:1703.08554

  6. A.S. Besicovitch, On fundamental geometric properties of plane-line sets. J. London Math. Soc. 39, 441–448 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Bourgain, Besicovitch type maximal operators and applications to Fourier analysis. Geom. Funct. Anal. 1, 147–187 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Bourgain, On the dimension of Kakeya sets and related maximal inequalities. Geom. Funct. Anal. 9, 256–282 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Bourgain, On the Erdös-Volkmann and Katz-Tao ring conjectures. Geom. Funct. Anal. 13, 334–365 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Bourgain, The discretized sum-product and projection theorems. J. Anal. Math. 112, 193–236 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Chen, Projections in vector spaces over finite fields. Ann. Acad. Sci. Fenn. A Math. 43, 171–185 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Chen, Restricted families of projections and random subspaces, arXiv:1706.03456

  13. R.O. Davies, Some remarks on the Kakeya problem. Proc. Cambridge Philos. Soc. 69, 417–421 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  14. Z. Dvir, On the size of Kakeya sets in finite fields. J. Amer. Math. Soc. 22, 1093–1097 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. M.B. Erdoğan, A bilinear Fourier extension problem and applications to the distance set problem. Int. Math. Res. Not. 23, 1411–1425 (2005)

    Article  MATH  Google Scholar 

  16. K.J. Falconer, Sections of sets of zero Lebesgue measure. Mathematika 27, 90–96 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. K.J. Falconer, Hausdorff dimension and the exceptional set of projections. Mathematika 29, 109–115 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. K.J. Falconer, The Geometry of Fractal Sets (Cambridge University Press, Cambridge, 1985)

    Book  MATH  Google Scholar 

  19. K.J. Falconer, Classes of sets with large intersection. Mathematika 32, 191–205 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. K.J. Falconer, On the Hausdorff dimension of distance sets. Mathematika 32, 206–212 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. K.J. Falconer, J. Fraser, X. Jin, Sixty Years of Fractal Projections. Fractal geometry and stochastics V, 3–25, Progr. Probab., 70, Birkhäuser/Springer, Cham (2015)

    Chapter  MATH  Google Scholar 

  22. K.J. Falconer, P. Mattila, Strong Marstrand theorems and dimensions of sets formed by subsets of hyperplanes. J. Fractal Geom. 3, 319–329 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. K.J. Falconer, T. O’Neil, Convolutions and the geometry of multifractal measures. Math. Nachr. 204, 61–82 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. K. Fässler, R. Hovila, Improved Hausdorff dimension estimate for vertical projections in the Heisenberg group. Ann. Sc. Norm. Super. Pisa Cl. Sci. 15(5), 459–483 (2016)

    Google Scholar 

  25. K. Fässler, T. Orponen, On restricted families of projections in \({\mathbb{R}}^3\). Proc. London Math. Soc. 109(3), 353–381 (2014)

    Google Scholar 

  26. H. Federer, Geometric Measure Theory (Springer, 1969)

    Google Scholar 

  27. L. Guth, Polynomial Methods in Combinatorics (American Mathematical Society, Provedence, RI, 2016)

    Book  MATH  Google Scholar 

  28. W. He, Orthogonal projections of discretized sets, arXiv:1710.00759, to appear in J. Fractal Geom

  29. K. Héra, T. Keleti, A. Máthé. Hausdorff dimension of union of affine subspaces, arXiv:1701.02299, to appear in J. Fractal Geom

  30. R. Hovila, E. Järvenpää, M. Järvenpää, F. Ledrappier, Besicovitch-Federer projection theorem and geodesic flows on Riemann surfaces. Geom. Dedicata 161, 51–61 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. R. Hovila, E. Järvenpää, M. Järvenpää, F. Ledrappier, Singularity of projections of 2-dimensional measures invariant under the geodesic flows on Riemann surfaces. Comm. Math. Phys. 312, 127–136 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Iosevich, B. Liu, Falconer distance problem, additive energy and Cartesian products. Ann. Acad. Sci. Fenn. Math. 41, 579–585 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Iosevich, B. Liu, Pinned distance problem, slicing measures and local smoothing estimates, arXiv:1706.09851

  34. E. Järvenpää, M. Järvenpää, T. Keleti, Hausdorff dimension and non-degenerate families of projections. J. Geom. Anal. 24, 2020–2034 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. E. Järvenpää, M. Järvenpää, F. Ledrappier, M. Leikas, One-dimensional families of projections. Nonlinearity 21(3), 453–463 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Käenmäki, T. Orponen, L. Venieri, A Marstrand-type restricted projection theorem in \({\mathbb{R}}^3\), arXiv:1708.04859

  37. J.-P. Kahane, Sur la dimension des intersections, In Aspects of Mathematics and Applications. North-Holland Math. Lib. 34, 419–430 (1986)

    Article  Google Scholar 

  38. N.H. Katz, T. Tao, Bounds on arithmetic projections, and applications to the Kakeya conjecture. Math. Res. Lett. 6, 625–630 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. N.H. Katz, T. Tao, New bounds for Kakeya problems. J. Anal. Math. 87, 231–263 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. N.H. Katz, J. Zahl, An improved bound on the Hausdorff dimension of Besicovitch sets in \({\mathbb{R}}^3\). J. Amer. Math. Soc., August 2018, published electronically

    Google Scholar 

  41. R. Kaufman, On Hausdorff dimension of projections. Mathematika 15, 153–155 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  42. R. Kaufman, P. Mattila, Hausdorff dimension and exceptional sets of linear transformations. Ann. Acad. Sci. Fenn. A Math. 1, 387–392 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  43. T. Keleti. A 1-dimensional subset of the reals that intersects each of its translates in at most a single point. Real Anal. Exchange 24, 843–844 (1998/99)

    Google Scholar 

  44. T. Keleti, Are lines much bigger than line segments? Proc. Amer. Math. Soc. 144, 1535–1541 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. T. Keleti, Small union with large set of centers, in Recent developments in Fractals and Related Fields, ed. Julien Barral and Stéphane Seuret, Birkhäuser (2015). arXiv:1701.02762

  46. R. Lucá, K. Rogers, Average decay of the Fourier transform of measures with applications, arXiv:1503.00105

  47. J.M. Marstrand, Some fundamental geometrical properties of plane sets of fractional dimensions. Proc. London Math. Soc. 4(3), 257–302 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  48. J.M. Marstrand, The dimension of cartesian product sets. Proc. Cambridge Philos. Soc. 50(3), 198–202 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  49. J.M. Marstrand, Packing planes in \({{\mathbb{R}}}^3\). Mathematika 26, 180–183 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  50. P. Mattila, Hausdorff dimension, orthogonal projections and intersections with planes. Ann. Acad. Sci. Fenn. A Math. 1, 227–244 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  51. P. Mattila, Hausdorff dimension and capacities of intersections of sets in n-space. Acta Math. 152, 77–105 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  52. P. Mattila, On the Hausdorff dimension and capacities of intersections. Mathematika 32, 213–217 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  53. P. Mattila, Geometry of Sets and Measures in Euclidean Spaces (Cambridge University Press, Cambridge, 1995)

    Book  MATH  Google Scholar 

  54. P. Mattila, Recent Progress on Dimensions of Projections. Geometry and analysis of fractals, 283–301, Springer Proc. Math. Stat., 88, Springer, Heidelberg (2014)

    Google Scholar 

  55. P. Mattila, Fourier Analysis and Hausdorff Dimension (Cambridge University Press, Cambridge, 2015)

    Book  MATH  Google Scholar 

  56. P. Mattila, Exeptional set estimates for the Hausdorff dimension of intersections. Ann. Acad. Sci. Fenn. A Math. 42, 611–620 (2017)

    Article  MATH  Google Scholar 

  57. P. Mattila, T. Orponen, Hausdorff dimension, intersections of projections and exceptional plane sections. Proc. Amer. Math. Soc. 144, 3419–3430 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  58. P. Mattila, P. Sjölin, Regularity of distance measures and sets. Math. Nachr. 204, 157–162 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  59. U. Molter, E. Rela, Improving dimension estimates for Furstenberg-type sets. Adv. Math. 223, 672–688 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  60. U. Molter, E. Rela, Furstenberg sets for a fractal set of directions. Proc. Amer. Math. Soc. 140, 2753–2765 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  61. U. Molter, E. Rela, Small Furstenberg sets. J. Math. Anal. Appl. 400, 475–486 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  62. D.M. Oberlin, Restricted Radon transforms and projections of planar sets. Canad. Math. Bull. 55, 815–820 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  63. D.M. Oberlin, Exceptional sets of projections, unions of k-planes, and associated transforms. Israel J. Math. 202, 331–342 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  64. D.M. Oberlin, Some toy Furstenberg sets and projections of the four-corner Cantor set. Proc. Amer. Math. Soc. 142(4), 1209–1215

    Article  MathSciNet  MATH  Google Scholar 

  65. D.M. Oberlin, R. Oberlin, Application of a Fourier restriction theorem to certain families of projections in \({{\mathbb{R}}}^3\). J. Geom. Anal. 25(3), 1476–1491 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  66. R. Oberlin, Two bounds for the \(X\)-ray transform. Math. Z. 266, 623–644 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  67. T. Orponen, Slicing sets and measures, and the dimension of exceptional parameters. J. Geom. Anal. 24, 47–80 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  68. T. Orponen, Hausdorff dimension estimates for some restricted families of projections in \({\mathbb{R}}^3\). Adv. Math. 275, 147–183 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  69. T. Orponen, On the packing dimension and category of exceptional sets of orthogonal projections. Ann. Mat. Pura Appl. 194(4), 843–880 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  70. T. Orponen, Projections of planar sets in well-separated directions. Adv. Math. 297, 1–25 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  71. T. Orponen, On the distance sets of AD-regular sets. Adv. Math. 307, 1029–1045 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  72. T. Orponen, A sharp exceptional set estimate for visibility. Bull. London. Math Soc. 50, 1–6 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  73. T. Orponen, An improved bound on the packing dimension of Furstenberg sets in the plane, arXiv:1611.09762, to appear in J. Eur. Math. Soc

  74. T. Orponen, On the dimension and smoothness of radial projections, arXiv:1710.11053, to appear in Anal. PDE

  75. T. Orponen, L. Venieri, Improved bounds for restricted families of projections to planes in \({\mathbb{R}}^3\), appeared online in Int (Math. Res, Notices, 2018)

    Google Scholar 

  76. Y. Peres, W. Schlag, Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions. Duke Math. J. 102, 193–251 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  77. E. Rela, Refined size estimates for Furstenberg sets via Hausdorff measures: a survey of some recent results, arXiv:1305.3752

  78. P. Shmerkin, Projections of self-similar and related fractals: a survey of recent developments, arXiv:1501.00875, Fractal geometry and stochastics V, 53–74, Progr. Probab., 70, Birkhäuser/Springer, Cham (2015)

    Chapter  MATH  Google Scholar 

  79. P. Shmerkin, On Furstenberg’s intersection conjecture, self-similar measures, and the \(L^q\) norms of convolutions, arXiv:1609.07802

  80. P. Shmerkin, On distance sets, box-counting and Ahlfors-regular sets. Discrete Anal. Paper No. 9, 22 pp (2017)

    Google Scholar 

  81. P. Shmerkin, On the Hausdorff dimension of pinned distance sets, arXiv:1706.00131

  82. L. Venieri, Dimension estimates for Kakeya sets defined in an axiomatic setting, arXiv:1703.03635, Ann. Acad. Sci Fenn. Disserationes 161 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  83. T.W. Wolff, An improved bound for Kakeya type maximal functions. Rev. Mat. Iberoam. 11, 651–674 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  84. T.W. Wolff, A Kakeya-type problem for circles. Amer. J. Math. 119, 985–1026 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  85. T.W. Wolff, Decay of circular means of Fourier transforms of measures. Int. Math. Res. Not. 10, 547–567 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  86. T.W. Wolff, Lectures on Harmonic Analysis, vol. 29 (American Mathematical Society, 2003)

    Google Scholar 

  87. M. Wu, A proof of Furstenberg’s conjecture on the intersections of \(xp\) and \(xq\) invariant sets, arXiv:1609.08053

  88. H. Yu, Kakeya books and projections of Kakeya sets, arXiv:1704.04488

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pertti Mattila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mattila, P. (2019). Hausdorff Dimension, Projections, Intersections, and Besicovitch Sets. In: Aldroubi, A., Cabrelli, C., Jaffard, S., Molter, U. (eds) New Trends in Applied Harmonic Analysis, Volume 2. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-32353-0_6

Download citation

Publish with us

Policies and ethics