Skip to main content

Competitive Location Models

  • Chapter
  • First Online:
Location Science

Abstract

This chapter first provides a review of the foundations of competitive location models. It then traces subsequent developments through time under special consideration of customer behavior. After developing a general framework for customers’ decision making, the main results are cast within this framework. The conclusion outlines a number of areas, in which existing models can be refined and made more realistic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboolian R, Berman O, Krass D (2007) Competitive facility location model with concave demand. Eur J Oper Res 181(2):598–619

    Article  MathSciNet  MATH  Google Scholar 

  • Aboolian R, Berman O, Krass D (2008) Optimizing pricing and location decisions for competitive service facilities charging uniform price. J Oper Res Soc 59(11):1506–1519

    Article  MATH  Google Scholar 

  • Anderson SP (1987) Spatial competition and price leadership. Int J Ind Organ 5:369–398

    Article  Google Scholar 

  • Anderson SP (1988) Equilibrium existence in the linear model of spatial competition. Economica 55(220):479–491

    Article  Google Scholar 

  • Anderson SP, Neven DJ (1989) Market efficiency with combinable products. Eur Econ Rev 33:707–719

    Article  Google Scholar 

  • Anderson SP, Neven DJ (1991) Cournot competition yields spatial agglomeration. Int Econ Rev 32:793–808

    Article  MATH  Google Scholar 

  • Anderson SP, de Palma A (1992) Spatial equilibrium with footloose firms. J Reg Sci 32(3):309–320

    Article  Google Scholar 

  • Anderson SP, de Palma A, Thisse J-F (1992) Social surplus and profitability under different spatial pricing policies. South Econ J 58:934–949

    Article  Google Scholar 

  • Anderson SP, Goeree JK, Ramer R (1997) Location, location, location. J Econ Theory 77:102–127

    Article  MathSciNet  MATH  Google Scholar 

  • Aoyagi M, Okabe A (1993) Spatial competition of firms in a two-dimensional bounded market. Reg Sci Urban Econ 23:259–289

    Article  Google Scholar 

  • Applegate DL, Bixby RE, Chvátal V, Cook WJ (2007) The traveling salesman problem: a computational study. Princeton series in applied mathematics. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Aras N, Küçükaydın H (2017) Bilevel models on the competitive facility location problem. In: Mallozzi L, D’Amato E, Pardalos P (eds) Spatial interaction models. Springer optimization and its applications 118. Springer, Cham, pp 1–19

    MATH  Google Scholar 

  • Arrondo AG, Fernández J, Redondo JL, Ortigosa PM (2014) An approach for solving competitive location problems with variable demand using multicore systems. Optim Lett 8:555–567

    Article  MathSciNet  MATH  Google Scholar 

  • Ashtiani MG (2016) Competitive location: a state-of-art review. Int J Ind Eng Comput 7:1–18

    Google Scholar 

  • Bagherinejad J, Niknam A (2018) Solving the competitive facility location problem considering the reactions of competitor with a hybrid algorithm including Tabu search and exact method. J Ind Eng Int 14:171–183

    Article  Google Scholar 

  • Beckmann MJ (1972) Spatial Cournot oligopoly. Pap Reg Sci Assoc 28:37–47

    Article  Google Scholar 

  • Benati S (1999) The maximum capture problem with heterogeneous customers. Comput Oper Res 26:1351–1367

    Article  MathSciNet  MATH  Google Scholar 

  • Benati S (2003) An improved branch & bound method for the uncapacitated competitive location problem. Ann Oper Res 122:42–58

    Article  MathSciNet  MATH  Google Scholar 

  • Benati S, Laporte G (1994) Tabu search algorithms for the (r|Xp) medianoid and the (r|p) centroid problems. Locat Sci 2(4):193–204

    MATH  Google Scholar 

  • Berglund PG, Kwon C (2014) Solving a location problem of a Stackelberg firm competing with Cournot-Nash firms. Netw Spat Econ 14:117–132

    Article  MathSciNet  MATH  Google Scholar 

  • Berman O, Krass D (1998) Flow intercepting spatial interaction model: a new approach to optimal location of competitive facilities. Locat Sci 6:41–65

    Article  Google Scholar 

  • Berman O, Hodgson MJ, Krass D (1995) Flow-interception problems. In: Drezner Z (ed) Facility location: a survey of applications and methods. Springer, New York, pp 389–426

    Chapter  Google Scholar 

  • Bester H, de Palma A, Leininger W, Thomas J, von Thadden E-L (1996) A noncooperative analysis of Hotelling’s location game. Games Econ Behav 12:165–186

    Article  MathSciNet  MATH  Google Scholar 

  • Bhadury J (1996) Competitive location under uncertainty of costs. J Reg Sci 36(4):527–554

    Article  MathSciNet  Google Scholar 

  • Bhadury J, Eiselt HA (1995) Stability of Nash equilibria in locational games. Recherche opérationnelle/Oper Res 29(1):19–33

    MathSciNet  MATH  Google Scholar 

  • Bonanno G (1987) Location choice, product proliferation and entry deterrence. Rev Econ Stud 54:37–45

    Article  MATH  Google Scholar 

  • Braid RM (1988) Heterogeneous preferences and non-central agglomeration of firms. Reg Sci Urban Econ 18:57–68

    Article  Google Scholar 

  • Braid RM (1989) Retail competition along intersecting roadways. Reg Sci Urban Econ 19:107–112

    Article  Google Scholar 

  • Braid RM (1996) The optimal locations of branch facilities and main facilities with consumer search. J Reg Sci 36(2):217–234

    Article  Google Scholar 

  • Braid RM (2013) The location of firms on intersecting roadways. Ann Reg Sci 50:791–808

    Article  Google Scholar 

  • Brown S (1989) Retail location theory: the legacy of Harold Hotelling. J Retail 65(4):450–470

    Google Scholar 

  • Cancian M, Bills A, Bergstrom T (1995) Hotelling location problems with directional constraints: an application to television news scheduling. J Ind Econ 43:121–124

    Article  Google Scholar 

  • Caplin A, Nalebuff B (1991) Aggregation and imperfect competition: on the existence of equilibrium. Econometrica 59:25–60

    Article  MathSciNet  MATH  Google Scholar 

  • Choi CS, DeSarbo WS, Harker PT (1990) Product positioning under price competition. Manag Sci 36(2):175–199

    Article  MATH  Google Scholar 

  • Colombo S (2016) A model of three cities: the locations of two firms with different types of competition. Int Reg Sci Rev 39(4):386–416

    Article  Google Scholar 

  • Cremer H, Marchand M, Thisse J-F (1991) Mixed oligopoly with differentiatied products. Int J Ind Organ 9:43–53

    Article  Google Scholar 

  • Čvokić DD, Kochetov YA, Plyasunov AV (2016) A leader-follower hub location problem under fixed markups. In: Kochetov Y, Khachay M, Beresnev V, Nurminski E, Pardalos P (eds) Discrete optimization and operations research. Lecture notes in computer science, vol 9869. Springer, Cham, pp 350–363

    Chapter  Google Scholar 

  • d’Aspremont C, Gabszewicz JJ, Thisse J-F (1979) On Hotelling’s ‘stability in competition’. Econometrica 47:1145–1150

    Article  MathSciNet  MATH  Google Scholar 

  • Dasci A, Laporte G (2005) A continuous model for multistore competitive location. Oper Res 53(2):263–280

    Article  MathSciNet  MATH  Google Scholar 

  • Dasgupta P, Maskin E (1986) The existence of equilibrium in discontinuous economic games, I: theory. Rev Econ Stud 53:324–354

    MathSciNet  MATH  Google Scholar 

  • de Palma A, Ginsburgh V, Labbé M, Thisse J-F (1985) The principle of minimum differentiation holds under sufficient heterogeneity. Econometrica 53(4):767–781

    Article  MathSciNet  MATH  Google Scholar 

  • de Palma A, Ginsburgh V, Thisse J-F (1987a) On existence of locational equilibria in the 3-firm Hotelling problem. J Ind Econ 36:245–252

    Article  Google Scholar 

  • de Palma A, Pontes JP, Thisse J-F (1987b) Spatial competition under uniform delivered pricing. Reg Sci Urban Econ 17:441–449

    Article  Google Scholar 

  • de Palma A, Ginsburgh V, Labbé M, Thisse J-F (1989) Competitive location with random utilities. Transp Sci 23:244–252

    Article  MathSciNet  MATH  Google Scholar 

  • Drezner Z (1981) On a modified one-center model. Manag Sci 27(7):848–851

    Article  MATH  Google Scholar 

  • Drezner Z (1982) Competitive location strategies for two facilities. Reg Sci Urban Econ 12:485–493

    Article  Google Scholar 

  • Drezner T (1994a) Optimal continuous location of a retail facility, facility attractiveness, and market share, an interactive model. J Retail 70:49–64

    Article  Google Scholar 

  • Drezner T (1994b) Locating a single new facility among existing, unequally attractive facilities. J Reg Sci 34(2):237–252

    Article  Google Scholar 

  • Drezner T (1995) Competitive facility location in the plane. A chapter. In: Drezner Z (ed) Facility location: a survey of applications and methods. Springer, New York, pp 285–300

    Chapter  Google Scholar 

  • Drezner T (2014) A review of competitive facility location in the plane. Logist Res 7(114):1–12

    Google Scholar 

  • Drezner T, Drezner Z (1997) Replacing continuous demand with discrete demand in a competitive location model. Nav Res Logist 44:81–95

    Article  MATH  Google Scholar 

  • Drezner T, Drezner Z (2017) Leader-follower models in facility location. In: Mallozzi L, d’Amato E, Pardalos PM (eds) Spatial interaction models. Springer, Cham, pp 73–104

    Chapter  MATH  Google Scholar 

  • Drezner T, Eiselt HA (2002) Consumers in competitive location models. In: Drezner Z, Hamacher H (eds) Facility location: applications and theory. Springer, Berlin, pp 151–176

    Chapter  MATH  Google Scholar 

  • Drezner T, Drezner Z, Eiselt HA (1996) Consistent and inconsistent rules in competitive facility choice. J Oper Res Soc 47:1494–1503

    Article  MATH  Google Scholar 

  • Drezner T, Drezner Z, Salhi S (2002) Solving the multiple competitive facilities location problem. Eur J Oper Res 142:138–151

    Article  MathSciNet  MATH  Google Scholar 

  • Drezner T, Drezner Z, Kalczynski P (2015) A leader-follower model for discrete competitive facility location. Comput Oper Res 64:51–59

    Article  MathSciNet  MATH  Google Scholar 

  • Durier R, Michelot C (1985) Geometrical properties of the Fermat-weber problem. Eur J Oper Res 20:332–343

    Article  MathSciNet  MATH  Google Scholar 

  • Eaton BC (1972) Spatial competition revisited. Can J Econ 5(2):268–278

    Article  Google Scholar 

  • Eaton BC (1976) Free entry in one-dimensional models: pure profits and multiple equilibria. J Reg Sci 16(1):21–33

    Article  MathSciNet  Google Scholar 

  • Eaton BC, Lipsey RG (1975) The principle of minimum differentiation reconsidered: some new developments in the theory of spatial competition. Rev Econ Stud 42(1):27–49

    Article  MATH  Google Scholar 

  • Economides NS (1986) Minimal and maximal product differentiation in Hotelling’s duopoly. Econ Lett 21:67–71

    Article  MathSciNet  MATH  Google Scholar 

  • Eiselt HA (1991) Different pricing policies in Hotelling’s duopoly model. Cahiers du CERO 33:195–205

    MATH  Google Scholar 

  • Eiselt HA (1992) Hotelling’s duopoly on a tree. Ann Oper Res 40:195–207

    Article  MathSciNet  MATH  Google Scholar 

  • Eiselt HA (1998) Perception and information in a competitive location model. Eur J Oper Res 108:94–105

    Article  MATH  Google Scholar 

  • Eiselt HA (2011) Equilibria in competitive location models. Chapter 7. In: Eiselt HA, Marianov V (eds) Foundations of location analysis. Springer, New York, pp 139–162

    Chapter  MATH  Google Scholar 

  • Eiselt HA, Bhadury J (1998) Reachability of locational Nash equilibria. OR-Spektrum 20:101–107

    Article  MATH  Google Scholar 

  • Eiselt HA, Laporte G (1991) Locational equilibrium of two facilities on a tree. Recherche Opérationnelle/Operations Research 25(1):5–18

    MathSciNet  MATH  Google Scholar 

  • Eiselt HA, Laporte G (1993) The existence of equilibria in the 3-facility Hotelling model on a tree. Transp Sci 27(1):39–43

    Article  MathSciNet  MATH  Google Scholar 

  • Eiselt HA, Laporte G (1995) In: Drezner Z (ed) Objectives in location problems. Pp. 151–180 in facility location: a survey of applications and methods. Springer, New York

    Google Scholar 

  • Eiselt HA, Marianov V (2017) Asymmetries in competitive location models on the line. In: Mallozzi L, D’Amato E, Pardalos PM (eds) Spatial interaction models: facility location using game theory. Springer, Cham, pp 105–128

    Chapter  MATH  Google Scholar 

  • Eiselt HA, Laporte G, Thisse J-F (1993) Competitive location models: a framework and bibliography. Transp Sci 27(1):44–54

    Article  MATH  Google Scholar 

  • Fernández P, Pelegrín B, Dolores M, Pérez G, Peeters PH (2007) A discrete long-term location-Price problem under the assumption of discriminatory pricing: formulations and parametric analysis. Eur J Oper Res 179:1050–1062

    Article  MATH  Google Scholar 

  • Fernández J, Salhi S, Tóth BG (2014) Location equilibria for a continuous competitive facility location problem under delivered pricing. Comput Oper Res 41:185–195

    Article  MathSciNet  MATH  Google Scholar 

  • Fernández P, Pelegrín B, Lančinskas A, Žilinskas J (2017a) New heuristic algorithms for discrete competitive location problems with binary and partially binary customer behavior. Comput Oper Res 79:12–18

    Article  MathSciNet  MATH  Google Scholar 

  • Fernández J, Tóth GB, Redondo JL, Ortigosa PM, Arrondo AG (2017b) A planar single-facility competitive location and design problem under the multi-deterministic choice rule. Comput Oper Res 78:305–315

    Article  MathSciNet  MATH  Google Scholar 

  • Gabszewicz JJ, Thisse J-F (1986) Spatial competition and the location of firms. In: Gabszewicz JJ, Thisse J-F, Fujita M, Schweizer U (eds) Location theory. Harwood Academic Publishers, Chur, pp 1–71

    Google Scholar 

  • Gabszewicz JJ, Thisse J-F, Fujita M, Schweizer U (1986) Location theory. Harwood Academic Publishers, Chur

    Google Scholar 

  • García Pérez MD, Pelegrín PB (2003) All Stackelberg location equilibria in the Hotelling’s duopoly model on a tree with parametric prices. Ann Oper Res 122:177–192

    Article  MathSciNet  MATH  Google Scholar 

  • Gentile J, Pessoa A, Poss M, Roboredo MC (2018) Integer programming formulations for three sequential discrete competitive location problems with foresight. Eur J Oper Res 265(3):872–881

    Article  MathSciNet  MATH  Google Scholar 

  • Ghaffarinasab N, Motallebzadeh A, Jabarzadeh Y, Kara BY (2018) Efficient simulated annealing based solution approaches to the competitive single and multiple allocation hub location problems. Comput Oper Res 90:173–192

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh A, Buchanan B (1988) Multiple outlets in a duopoly: a first entry paradox. Geogr Anal 20:111–121

    Article  Google Scholar 

  • Giudici P, Passerone G (2002) Data mining of association structures to model consumer behavior. Comput Stat Data Anal 38:533–541

    Article  MATH  Google Scholar 

  • Guo W-C, Lai F-C (2014) Spatial competition with quadratic transport costs and one online firm. Ann Reg Sci 51(3):309–324

    Article  Google Scholar 

  • Guo W-C, Lai F-C (2017) Prices, locations and welfare when an online retailer competes with heterogeneous brick-and-mortar retailers. J Ind Econ 65(2):439–468

    Article  Google Scholar 

  • Hakimi SL (1964) Optimum locations of switching centres and the absolute centres and medians of a graph. Oper Res 12:450–459

    Article  MATH  Google Scholar 

  • Hakimi SL (1983) On locating new facilities in a competitive environment. Eur J Oper Res 12:29–35

    Article  MathSciNet  MATH  Google Scholar 

  • Hakimi LS (1990) Locations with spatial interactions: competitive locations and games. In: Francis RL, Mirchandani PB (eds) Discrete location theory. Wiley, New York, pp 439–478

    Google Scholar 

  • Hamilton JH, Thisse J-F, Weskamp A (1989) Spatial discrimination: Bertrand vs Cournot in a model of location choice. Reg Sci Urban Econ 19(1):87–102

    Article  Google Scholar 

  • Hamoudi H, Moral MJ (2005) Equilibrium existence in the linear model: concave versus convex transportation costs. Pap Reg Sci 84(2):201–219

    Article  Google Scholar 

  • Hansen P, Labbé M (1988) Algorithms for voting and competitive location on a network. Transp Sci 22(4):278–288

    Article  MathSciNet  MATH  Google Scholar 

  • Hay DA (1976) Sequential entry and entry-deterring strategies in spatial competition. Oxf Econ Pap 28(2):240–257

    Article  Google Scholar 

  • Hendrix EMT (2016) On competition in a Stackelberg location-design model with deterministic supplier choice. Ann Oper Res 246:19–30

    Article  MathSciNet  MATH  Google Scholar 

  • Hodgson MJ (1990) A flow capturing location-allocation model. Geogr Anal 22:270–279

    Article  Google Scholar 

  • Hotelling H (1929) Stability in competition. Econ J 39:41–57

    Article  Google Scholar 

  • Huff DL (1964) Defining and estimating a trading area. J Mark 28:34–38

    Article  Google Scholar 

  • Hurter AP Jr, Lederer PJ (1985) Spatial duopoly with discriminatory pricing. Reg Sci Urban Econ 15:541–553

    Article  Google Scholar 

  • Infante-Macias R, Muñoz-Perez J (1995) Competitive location with rectilinear distances. Eur J Oper Res 80:77–85

    Article  MATH  Google Scholar 

  • Irmen A, Thisse J-F (1998) Competition in multi-characteristic spaces: Hotelling was almost right. J Econ Theory 78:76–102

    Article  MATH  Google Scholar 

  • Karakitsiou A, Migdalas A (2017) Nash type games in competitive facilities location. Int J Decis Support Syst 2(1–3):4–12

    MATH  Google Scholar 

  • Kats A (1995) More on Hotelling’s ‘stability in competition’. Int J Ind Organ 13:89–93

    Article  Google Scholar 

  • Kohlberg E (1983) Equilibrium store locations when consumers minimize travel time plus waiting time. Econ Lett 11:211–216

    Article  MathSciNet  MATH  Google Scholar 

  • Kohlberg E, Novshek W (1982) Equilibrium in a simple price-location model. Econ Lett 9:7–15

    Article  Google Scholar 

  • Kononov AV, Panin AA, Plyasunov AV (2018) A new model of competitive location and pricing with the uniform split of the demand. In: Eremeev A, Khachay M, Kochetov Y, Pardalos P (eds) Optimization problems and their applications. Communications in Computer and Information Science, vol 871. Springer, Cham, pp 16–28

    Chapter  Google Scholar 

  • Kress D, Pesch E (2012) Sequential competitive location on networks. Eur J Oper Res 217:483–499

    Article  MathSciNet  MATH  Google Scholar 

  • Kress D, Pesch E (2016) Competitive location and pricing on networks with random utilities. Netw Spat Econ 16(3):837–863

    Article  MathSciNet  MATH  Google Scholar 

  • Labbé M, Hakimi SL (1991) Market and locational equilibrium for two competitors. Oper Res 39(5):749–756

    Article  MathSciNet  MATH  Google Scholar 

  • Lane WJ (1980) Product differentiation in a market with endogenous sequential entry. Bell J Econ 11(1):237–260

    Article  Google Scholar 

  • Laporte G, Riera-Ledesma J, Salazar-González JJ (2003) A branch-and-cut algorithm for the undirected traveling purchaser problem. Oper Res 51(6):940–951

    Article  MathSciNet  MATH  Google Scholar 

  • Lederer PJ, Hurter AP Jr (1986) Competition of firms: discriminatory pricing and location. Econometrica 54(3):623–640

    Article  MathSciNet  MATH  Google Scholar 

  • Lederer PJ, Thisse J-F (1990) Competitive location on networks under delivered pricing. Oper Res Lett 9:147–153

    Article  MathSciNet  MATH  Google Scholar 

  • Lerner AP, Singer HW (1937) Some notes on duopoly and spatial competition. J Polit Econ 45(2):145–186

    Article  Google Scholar 

  • Levanova T, Gnusarev A (2018) Ant colony optimization for competitive facility location problem with elastic demand. In: Belim S et al. (eds.) OPTA-SCL 2018, Omsk. Available online at http://ceur-ws.org/Vol-2098/paper21.pdf. Last Accessed 1 Aug 2019

  • Liou JJH (2009) A novel decision rules approach for customer relationship management of the airline market. Expert Syst Appl 36:4374–4381

    Article  Google Scholar 

  • Lösch A (1954) The economics of location, 2nd rev. edn. Yale University Press, New Haven

    Google Scholar 

  • Mahmutogullari AI, Kara BY (2015) Hub location under competition. Eur J Oper Res 250(1):214–225

    Article  MathSciNet  MATH  Google Scholar 

  • Marianov V, Eiselt HA (2016) On agglomeration in competitive location models. Ann Oper Res 246:31–55

    Article  MathSciNet  MATH  Google Scholar 

  • Marianov V, Taborga P (2001) Optimal location of public health centres which provide free and paid services. J Oper Res Soc 52:391–400

    Article  MATH  Google Scholar 

  • Marianov V, Serra D, ReVelle C (1999) Location of hubs in a competitive environment. Eur J Oper Res 114:363–371

    Article  MATH  Google Scholar 

  • Marianov V, Ríos M, Taborga P (2004) Finding locations for public service centers that compete with private centers: effects of congestion. Pap Reg Sci 83(4):631–648

    Google Scholar 

  • Marianov V, Ríos M, Icaza MJ (2008) Facility location for market capture when users rank facilities by travel and waiting times. Eur J Oper Res 191(1):32–44

    Article  MathSciNet  MATH  Google Scholar 

  • Marianov V, Eiselt HA, Lüer-Villagra A (2018) Effects of multipurpose shopping trips on retail store location. Eur J Oper Res 269(2):782–792

    Article  MathSciNet  MATH  Google Scholar 

  • Matsumura T, Matsushima N (2009) Cost differentials and mixed strategy equilibria in a Hotelling model. Ann Reg Sci 43:215–234

    Article  Google Scholar 

  • Matsumura T, Shimizu D (2006) Cournot and Bertrand in shipping models with circular markets. Pap Reg Sci 85(4):585–598

    Article  Google Scholar 

  • McFadden D (1974) Conditional logit analysis of qualitative choice behavior. In: Zarembka P (ed) Frontiers in econometrics. Academic, New York

    Google Scholar 

  • Megiddo N, Zemel E, Hakimi SL (1983) The maximum coverage location problem. SIAM J Algebraic Discret Methods 4:253–161

    Article  MathSciNet  MATH  Google Scholar 

  • Meza S, Tombak M (2009) Endogenous location leadership. Int J Ind Organ 27:687–707

    Article  Google Scholar 

  • Nakashani M, Cooper LG (1974) Parameter estimation for a multiplicative competitive interaction mode–least squares approach. J Mark Res XI:303–311

    Google Scholar 

  • Narula SC, Harwitz M, Lentnek B (1983) Where shall we shop today? A theory of multiple-stop, multiple-purpose shopping trips. Pap Reg Sci Assoc 53:159–173

    Article  Google Scholar 

  • Neven DJ (1987) Endogenous sequential entry in a spatial model. Int J Ind Organ 5:419–434

    Article  Google Scholar 

  • Niknamfar AH, Niaki STA, Niaki SAA (2017) Opposition-based learning for competitive hub location: a bi-objective biogeography-based optimization algorithm. Knowl-Based Syst 128: 1–19

    Article  Google Scholar 

  • Okabe A, Aoyagi M (1991) Existence of equilibrium configurations of competitive firms on an infinite two-dimensional space. J Urban Econ 29:349–370

    Article  MATH  Google Scholar 

  • Okabe A, Suzuki A (1987) Stability of spatial competition for a large number of firms on a bounded two-dimensional space. Environ Plan A19:1067–1082

    Article  Google Scholar 

  • Osborne MJ, Pitchik C (1986) The nature of equilibrium in a location model. Int Econ Rev 27(1):223–237

    Article  MathSciNet  MATH  Google Scholar 

  • Osborne MJ, Pitchik C (1987) Equilibrium in Hotelling’s model of spatial competition. Econometrica 55(4):911–922

    Article  MATH  Google Scholar 

  • Panin AA, Pashchekno MG, Plyasunov AV (2014) Bilevel competitive facility location and pricing problems. Autom Remote Control 75(4):715–727

    Article  MathSciNet  MATH  Google Scholar 

  • Pelegrín B, Fernández P, Suárez R, García MD (2006) Single facility location on a network under mill and delivered pricing. IMA J Manag Math 17(4):373–385

    Article  MathSciNet  MATH  Google Scholar 

  • Pelegrín B, Fernández P, García Pérez MD (2015) On tie breaking in competitive location under binary customer behavior. Omega 52:156–167

    Article  Google Scholar 

  • Penn M, Kariv O (1989) Competitive location in trees: parts I and II. In: Working paper 89-MSC-029. Faculty of Commerce and Business Administration, University of British Columbia, Vancouver

    Google Scholar 

  • Plastria F (1992) On destination optimality in asymmetric distance Fermat-weber problems. Ann Oper Res 40:369–355

    Article  MathSciNet  MATH  Google Scholar 

  • Plastria F (2001) Static competitive facility location: an overview of optimization approaches. Eur J Oper Res 129:461–470

    Article  MATH  Google Scholar 

  • Prescott EC, Visscher M (1977) Sequential location among firms with foresight. Bell J Econ 8:378–393

    Article  Google Scholar 

  • Qi M, Xia M, Zhang Y, Miao L (2017) Competitive facility location problem with foresight considering service distance limitations. Comput Ind Eng 112:483–491

    Article  Google Scholar 

  • Rahmani A (2016) Competitive facility location problem with attractiveness adjustment of the follower on the closed supply chain. Cogent Math 3:1–19. Available at https://www.cogentoa.com/article/10.1080/23311835.2016.1189375.pdf. Last accessed on 1/8/2019

    Article  MathSciNet  MATH  Google Scholar 

  • Raiport JJ, Sviokla JJ (1994) Managing in the market-space. Harv Bus Rev 72(5):141–150

    Google Scholar 

  • Reilly WJ (1931) The law of retail gravitation. Knickerbocker Press, New York

    Google Scholar 

  • ReVelle CS (1986) The maximum capture or “sphere of influence” location problem: hotelling revisited on a network. J Reg Sci 26(2):343–358

    Article  Google Scholar 

  • Rohaninejad M, Navidi H, Nouri BV, Kamranrad R (2017) A new approach to cooperative competition in facility location problems: mathematical formulations and an approximation algorithm. Comput Oper Res 83:45–53

    Article  MathSciNet  MATH  Google Scholar 

  • Rothschild R (1979) The effect of sequential entry on choice of location. Eur Econ Rev 12:227–241

    Article  Google Scholar 

  • Ruiz-Hernández D, Elizalde J, Delgado-Gómez D (2017) Cournot-Stackelberg games in competitive delocation. Ann Oper Res 256(1):149–170

    Article  MathSciNet  MATH  Google Scholar 

  • Sadjadi SJ, Ashtiani MG, Ramezanian R, Makui A (2016) A firefly algorithm for solving competitive location-design problem: a case study. J Ind Eng Int 12:517–527

    Article  Google Scholar 

  • Santos-Peñate DR, Campos-Rodríguez C, Moreno-Pérez JA (2017) A Matheuristic to solve a competitive location problem. In: Quesada-Arencibia A, Rodríguez-Rodríguez JC, Moreno-Díaz R, Moreno-Díaz R Jr (eds) Computer-aided systems theory. Ramon Llull’s Ars magna. Springer, Cham, pp 80–81

    Google Scholar 

  • Sasaki M, Campbell JF, Krishnamoorthy M, Ernst AT (2014) A Stackelberg hub arc location model for a competitive environment. Comput Oper Res 47:27–41

    Article  MathSciNet  MATH  Google Scholar 

  • Selten R (1975) Re-examination of the perfectness concept for equilibrium points in extensive games. Int J Game Theory 4:22–55

    Article  Google Scholar 

  • Serra D, Colomé R (2001) Consumer choice and optimal locations models: formulations and heuristics. Pap Reg Sci 80:439–464

    Article  Google Scholar 

  • Serra D, ReVelle C (1994) Market capture by two competitors: the preemptive location problem. J Reg Sci 34(4):549–561

    Article  Google Scholar 

  • Serra D, ReVelle C (1995) Competitive location in discrete space. In: Drezner Z (ed) Facility location: a survey of applications and methods. Springer, Berlin

    Google Scholar 

  • Serra D, ReVelle C (1999) Competitive location and pricing on networks. Geogr Anal 31(1):109–129

    Article  Google Scholar 

  • Serra D, Eiselt HA, Laporte G, ReVelle CS (1999a) Market capture models under various customer choice rules. Environ Plan B Plan Design 26:741–750

    Article  Google Scholar 

  • Serra D, ReVelle C, Rosing K (1999b) Surviving in a competitive spatial market: the threshold capture model. J Reg Sci 39(4):637–652

    Article  Google Scholar 

  • Seyhan TH, Snyder LV, Zhang Y (2018) A new heuristic formulation for a competitive maximal covering location problem. Transp Sci 52(5):1035–1296

    Article  Google Scholar 

  • Shaked A (1975) Non-existence of equilibrium for the two-dimensional three-firms location problem. Rev Econ Stud 42(1):51–56

    Article  MathSciNet  MATH  Google Scholar 

  • Shaked A (1982) Existence and computation of mixed strategy Nash equilibrium for 3-firms location problem. J Ind Econ 31(1–2):93–96

    Article  Google Scholar 

  • Shan W, Yan Q, Chen C, Zhang M, Yao B, Fu X (2017) Optimization of competitive facility location for chain stores. Ann Oper Res 273(1):187–205. see, e.g., https://link.springer.com/article/10.1007/s10479-017-2579-z. Last Retrieved 01 Aug 2019

    MathSciNet  Google Scholar 

  • Shigehiro S, Shiode S, Hiroaki I, Teraoka Y (1995) A competitive facility location problem. In: Fushimi M, Tone K (eds) Proceedings of APORS ‘94. World Scientific, Singapore, pp 251–257

    Google Scholar 

  • Slater PJ (1975) Maximin facility location. J Res Natl Bur Stand 79B:107–115

    Article  MathSciNet  MATH  Google Scholar 

  • Smithies A (1941) Optimum location in spatial competition. J Polit Econ 49:423–439

    Article  Google Scholar 

  • Song HS, Kim JK, Kim SH (2001) Mining the change of customer behavior in an internet shopping mall. Expert Syst Appl 21(3):157–168

    Article  Google Scholar 

  • Spoerhase J, Wirth H-C (2008) (r|p) centroid problems on paths and trees. Theor Comput Sci 410(47–49):5128–5137

    MathSciNet  MATH  Google Scholar 

  • Stevens B (1961) An application of game theory to a problem in location strategy. Pap Reg Sci Assoc 7:143–157

    Article  Google Scholar 

  • Suárez-Vega R, Santos-Peñate DR, Dorta-González P (2004) Competitive multi-facility location on networks: the (r|Xp)-medianoid problem. J Reg Sci 44(3):569–588

    Article  MATH  Google Scholar 

  • Suárez-Vega R, Santos-Peñate DR, Dorta-González D (2007) The follower location problem with attraction thresholds. Pap Reg Sci 86(1):123–137

    Article  MATH  Google Scholar 

  • Suárez-Vega R, Santos-Peñate DR, Dorta-González D (2014) Location and quality selection for new facilities on a network market. Ann Reg Sci 52(2):537–560

    Article  Google Scholar 

  • Tabuchi T (1994) Two-stage, two-dimensional spatial competition between two firms. Reg Sci Urban Econ 24:207–227

    Article  Google Scholar 

  • Tabuchi T, Thisse J-F (1995) Asymmetric equilibria in spatial competition. Int J Ind Organ 13:213–227

    Article  Google Scholar 

  • Teitz MB (1968) Locational strategies for competitive systems. J Reg Sci 8(2):135–138

    Article  Google Scholar 

  • Thisse J-F, Wildasin DE (1995) Optimal transportation policy with strategic locational choice. Reg Sci Urban Econ 25:395–410

    Article  Google Scholar 

  • Tsai J-F, Lai F-C (2005) Spatial duopoly with triangular markets. Pap Reg Sci 84(1):47–59

    Article  Google Scholar 

  • Tuan L-A (2017) A data-driven approach for the maximum capture problem in competitive facility location. Minh Hoang Ha (supervisor). Available at http://ds.libol.fpt.edu.vn/bitstream/123456789/2423/1/TuanLA_Thesis.pdf. Last Retrieved 01 Sept 2019

  • von Stackelberg H (1943) Grundlagen der theoretischen Volkswirtschaftslehre (translated as: The theory of the market economy). W. Hodge & Co. Ltd., London, p 1952

    Google Scholar 

  • Xue Z, Gao Y, Yin J (2017) Competitive facility location problem with exotic products. In: 4th international conference on industrial engineering and applications ICIEA. IEEE Press, Nagoya, pp 173–177

    Google Scholar 

  • Younies H, Eiselt HA (2011) Sequential location models. Chapter 8. In: Eiselt HA, Marianov V (eds) Foundations of location analysis. Springer, Berlin

    MATH  Google Scholar 

  • Zhang ZJ (1995) Price-matching policy and the principle of minimum differentiation. J Ind Econ 43:287–299

    Article  Google Scholar 

  • Zhang Y, Snyder LV, Ralphs TK, Xue Z (2016) The competitive facility location problem under disruption risks. Transp Res Part E Logist Transp Rev 93:453–473

    Article  Google Scholar 

Download references

Acknowledgments

This paper was in part supported by grants from the Institute Complex Engineering Systems, through grant CONICYT PIA FB 0816) and FONDECYT 1160025. This support is gratefully acknowledged. The authors would also like to thank a referee for his detailed comments that helped improve the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Marianov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eiselt, H.A., Marianov, V., Drezner, T. (2019). Competitive Location Models. In: Laporte, G., Nickel, S., Saldanha da Gama, F. (eds) Location Science. Springer, Cham. https://doi.org/10.1007/978-3-030-32177-2_14

Download citation

Publish with us

Policies and ethics