Skip to main content

Asteroid Impacts and Their Geological Consequences

  • Chapter
  • First Online:
The Puchezh-Katunki Impact Crater

Part of the book series: Impact Studies ((IMPACTSTUD))

Abstract

A review of available data on the impact cratering in the Solar System is presented. Most of data have been collected during robotic space missions to the Moon and other terrestrial planets. The main attention is attracted to morphology and morphometry of impact craters, comparable is size with the Puchezh-Katunki structure. All these craters have clearly visible central mound. Crater’s depth-diameter relations on planetary bodies with various surface gravity accelerations demonstrate that the simple-to-complex transitional crater diameter increases with decreasing of the surface gravity. The original depth of the Puchezh-Katunki structure and the presence of the central uplift well fit general trends, observed for impact craters on all planetary bodies of the terrestrial type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cochrane CG, Ghail RC (2006) Topographic constraints on impact crater morphology on Venus from high-resolution stereo synthetic aperture radar digital elevation models. J Geophys Res Planets 111:E04007. https://doi.org/10.1029/2005JE002570

    Article  Google Scholar 

  • Croft SK (1985) The scaling of complex craters. J Geophys Res 90:C828–C842

    Article  Google Scholar 

  • Dones L, Brasser R, Kaib N, Rickman H (2015) Origin and evolution of the cometary reservoirs. Space Sci Rev 197:191–269

    Article  Google Scholar 

  • Grieve RAF, Robertson PB, Dence MR, Schultz PH (1981) Constraints on the formation of ring impact structures, based on terrestrial data. In: Merill RB (ed) Multi-ring basins: formation and evolution. Pergamon Press, New York and Oxford, pp 37–57

    Google Scholar 

  • Heiken GH, Vaniman DT, French BM (1991) Lunar sourcebook—a user’s guide to the moon. Cambridge University Press, Cambridge, UK, p 753

    Google Scholar 

  • Herrick RR, Stahlke DL, Sharpton VL (2012) Fine-scale venusian topography from magellan stereo data. Eos, Trans Am Geophys Union 93(12):125–126

    Article  Google Scholar 

  • Hiesinger H, Marchi S, Schmedemann N, Schenk P, Pasckert JH, Neesemann A, O’Brien DP, Kneissl T, Ermakov AI, Fu RR, Bland MT, Nathues A, Platz T, Williams DA, Jaumann R, Castillo-Rogez JC, Ruesch O, Schmidt B, Park RS, Preusker F, Buczkowski DL, Russell CT, Raymond CA (2016) Cratering on Ceres: implications for its crust and evolution. Science 353(6303):aaf4759

    Article  Google Scholar 

  • Housen KR, Schmidt RM, Holsapple KA (1983) Crater ejecta scaling laws—fundamental forms based on dimensional analysis. J Geophys Res 88:2485–2499

    Article  Google Scholar 

  • Ivanov BA (1989) The morphometry of impact craters on Venus. Astronomicheskii Vestnik 23:39–49 (in Russian)

    Google Scholar 

  • Ivanov B (2008) Impact crater ing on venus: ballistic hole in the atmosphere (abs.). In: Proceedings European planetary science congress 2008, Münster, Germany, p 341

    Google Scholar 

  • Ivanov BA (2018) Size-frequency distribution of small lunar craters: widening with degradation and crater lifetime. Sol Syst Res 52(1):1–25

    Article  Google Scholar 

  • Ivanov BA, Ford PG (1993) The depths of the largest impact craters on Venus. Lunar and Planetary Science XXIV. Houston, TX, pp 689–690

    Google Scholar 

  • Ivanov BA, Bazilevsky AT, Krivchkov VP, Chernaia IM (1986) Impact craters of venus—analysis of venera 15 and 16 data. J Geophys Res 91:D413–D430

    Article  Google Scholar 

  • Ivanov BA, Nemchinov IV, Svetsov VA, Provalov AA, Khazins VM, Phillips RJ (1992) Impact cratering on Venus: Physical and mechanical models. J Geophys Res 97(E10):16167–16181

    Article  Google Scholar 

  • Kalynn J, Johnson CL, Osinski GR, Barnouin O (2013) Topographic characterization of lunar complex craters. Geophys Res Lett 40:38–42

    Article  Google Scholar 

  • Krüger T, Hergarten S, Kenkmann T (2018) Deriving morphometric parameters and the simple-to-complex transition diameter from a high-resolution, global database of fresh lunar impact craters (D ≥ ~ 3 km). J Geophys Res Planets 123:2667–2690

    Article  Google Scholar 

  • Melosh HJ (1989) Impact cratering—a geologic process. Oxford University Press, Oxford—New York, p 245

    Google Scholar 

  • Moore HJ, Hodges CA, Scott DH (1974) Multiringed basins—illustrated by orientale and associated features. In: Proceedings 5th lunar and planetary science conference, Pergamon Press, New York, pp 71–100

    Google Scholar 

  • Neish CD, Herrick RR, Zanetti M, Smith D (2017) The role of pre-impact topography in impact melt emplacement on terrestrial planets. Icarus 297:240–251

    Article  Google Scholar 

  • Osinski GR, Silber EA, Clayton J, Grieve RAF, Hansen K, Johnson CL, Kalynn J, Tornabene LL (2019) Transitional impact craters on the moon: insight into the effect of target lithology on the impact cratering process. Meteorit Planet Sci 54:573–591

    Google Scholar 

  • Ostrowski D, Bryson K (2019) The physical properties of meteorites. Planet Space Sci 165:148–178

    Article  Google Scholar 

  • Phillips RJ, Arvidson RE, Boyce JM, Campbell DB, Guest JE, Schaber GG, Soderblom LA (1991) Impact craters on venus—initial analysis from Magellan. Science 252:288–297

    Article  Google Scholar 

  • Phillips RJ, Raubertas RF, Arvidson RE, Sarkar IC, Herrick RR, Izenberg N, Grimm RE (1992) Impact craters and venus resurfacing history. J Geophys Res 97:15923–15948

    Article  Google Scholar 

  • Pike RJ (1977) Size-dependence in the shape of fresh impact craters on the moon. In: Roddy DJ, Pepin RO, Merrill RB (eds) Impact and Explosion Cratering: Planetary and Terrestrial Implications. Pergamon Press, Oxford, pp 489–509

    Google Scholar 

  • Pike RJ (1980) Control of crater morphology by gravity and target type—Mars, Earth, Moon. In: Proceedings of the eleventh Lunar and Planetary Science Conference, pp 2159–2189

    Google Scholar 

  • Prieur NC, Rolf T, Luther R, Wünnemann K, Xiao Z, Werner SC (2017) The effect of target properties on transient crater scaling for simple craters. J Geophys Res Planets 122(8):2017JE005283

    Article  Google Scholar 

  • Robbins SJ, Watters WA, Chappelow JE, Bray VJ, Daubar IJ, Craddock RA, Beyer RA, Landis M, Ostrach LR, Tornabene LL, Riggs JD, Weave BP (2018) Measuring impact crater depth throughout the solar system. Meteorit Planet Sci 53:583–637

    Article  Google Scholar 

  • Scheeres DJ, Britt D, Carry B, Holsapple KA (2015) Asteroid Interiors and Morphology. In: Michel P, DeMeo FE, Bottke FW (eds) Asteroids IV. University of Arizona Press, Tucson, pp 745–766

    Google Scholar 

  • Schmidt RM, Housen KR (1987) Some recent advances in the scaling of impact and explosion cratering. Int J Impact Eng 5:543–560

    Article  Google Scholar 

  • Schultz PH (1992) Atmospheric effects on ejecta emplacement and crater formation on venus from Magellan. J Geophys Res 97(E10):16183–16248

    Article  Google Scholar 

  • Sharpton VL (1994) Evidence from Magellan for unexpectedly deep complex craters on Venus. In: Dressier BO, Grieve RAF, Sharpton VL (eds) Large Meteorite Impacts and Planetary Evolution. Geological Society of America, Boulder, CO, pp 19–27

    Google Scholar 

  • Stopar JD, Robinson MS, Barnouin OS, McEwen AS, Speyerer EJ, Henriksen MR, Sutton SS (2017) Relative depths of simple craters and the nature of the lunar regolith. Icarus. https://doi.org/10.1016/j.icarus.2017.05.022

    Article  Google Scholar 

  • Susorney HCM, Barnouin OS, Ernst CM, Johnson CL (2016) Morphometry of impact craters on Mercury from MESSENGER altimetry and imaging. Icarus 271:180–193

    Article  Google Scholar 

  • Tornabene LL, Watters WA, Osinski GR, Boyce JM, Harrison TN, Ling V, McEwen AS (2018) A depth versus diameter scaling relationship for the best-preserved melt-bearing complex craters on Mars. Icarus 299:68–83

    Article  Google Scholar 

  • Werner SC, Ivanov BA (2015) Exogenic dynamics, cratering, and surface ages (chapter 10.10). In: Schubert G (ed) Treatise on geophysics, 2nd edn. Elseiver, Oxford, pp 327–365

    Chapter  Google Scholar 

  • Wünnemann K, Ivanov BA (2003) Numerical modelling of the impact crater depth–diameter dependence in an acoustically fluidized target. Planet Space Sci 51(13):831–845

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris A. Ivanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ivanov, B.A. (2020). Asteroid Impacts and Their Geological Consequences. In: Masaitis, V., Naumov, M. (eds) The Puchezh-Katunki Impact Crater. Impact Studies. Springer, Cham. https://doi.org/10.1007/978-3-030-32043-0_6

Download citation

Publish with us

Policies and ethics