Skip to main content

Whole-Body MR Imaging

  • Chapter
  • First Online:

Abstract

Whole-body magnetic resonance imaging (whole-body MR imaging) has evolved rapidly over the past decade as technical developments have enabled large field of view (FOV) imaging in clinically feasible timeframes, while preserving high contrast and spatial resolution. As a consequence, whole-body MR imaging has become a valuable tool in assessing a range of diffuse, multifocal, and/or multisystem disease processes. This is particularly appealing in the pediatric population given its lack of ionizing radiation, and whole-body MR imaging has emerged as an alternative imaging modality to other large FOV imaging techniques such as computed tomography (CT), positron emission tomography (PET), and radiographic skeletal surveys. In this chapter, whole-body MR imaging techniques are described, detailing standard pulse sequences, imaging planes and anatomic coverage suited to a range of indications, as well as protocols adapted to different pediatric disease entities. The spectrum of pathology discussed includes congenital disorders, specifically cancer predisposition syndromes such as Li-Fraumeni syndrome; other neoplastic disorders encompassing lymphoma, Langerhans cell histiocytosis, and treatment-related complications (e.g., osteonecrosis); infectious and noninfectious inflammatory conditions including fever of unknown origin (FUO); trauma; and postmortem imaging. Whole-body MR imaging can facilitate diagnosis, documents disease burden and treatment response, and guides invasive procedures such as biopsy. Whole-body MR imaging interpretation is also discussed, highlighting tools to optimize disease detection while minimizing pitfalls that can result in false positive or false negative findings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Greer MC. Whole-body magnetic resonance imaging: techniques and non-oncologic indications. Pediatr Radiol. 2018;48(9):1348–63.

    Article  PubMed  Google Scholar 

  2. Schooler GR, Davis JT, Daldrup-Link HE, Frush DP. Current utilization and procedural practices in pediatric whole-body MRI. Pediatr Radiol. 2018;48(8):1101–7.

    Article  PubMed  Google Scholar 

  3. Damasio MB, Magnaguagno F, Stagnaro G. Whole-body MRI: non-oncological applications in paediatrics. Radiol Med. 2016;121(5):454–61.

    Article  PubMed  Google Scholar 

  4. Chavhan GB, Babyn PS. Whole-body MR imaging in children: principles, technique, current applications, and future directions. Radiographics. 2011;3(6):1757–72.

    Article  Google Scholar 

  5. Pasoglou V, Michoux N, Larbi A, Van Nieuwenhove S, Lecouvet F. Whole body MRI and oncology: recent major advances. Br J Radiol. 2018;91(1090):20170664. Review

    Article  PubMed  PubMed Central  Google Scholar 

  6. Davis JT, Kwatra N, Schooler GR. Pediatric whole-body MRI: a review of current imaging techniques and clinical applications. J Magn Reson Imaging. 2016;44(4):783–93.

    Article  PubMed  Google Scholar 

  7. Greer MC, Voss SD, States LJ. Pediatric cancer predisposition imaging: focus on whole-body MRI. Clin Cancer Res. 2017;23(11):e6–e13.

    Article  PubMed  Google Scholar 

  8. Eutsler EP, Khanna G. Whole-body magnetic resonance imaging in children: technique and clinical applications. Pediatr Radiol. 2016;46(6):858–72.

    Article  PubMed  Google Scholar 

  9. Goo HW. Whole-body MRI in children: current imaging techniques and clinical applications. Korean J Radiol. 2015;16(5):973–85.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gottumukkala RV, Gee MS, Hampilos PJ, Greer MC. Current and emerging roles of whole-body mri in evaluation of pediatric cancer patients. Radiographics. 2019;39(2):516–34.

    Article  PubMed  Google Scholar 

  11. Teixeira SR, Elias Junior J, Nogueira-Barbosa MH, Guimarães MD, Marchiori E, Santos MK. Whole-body magnetic resonance imaging in children: state of the art. Radiol Bras. 2015;48(2):111–20.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;346:f2360.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lecouvet FE. Whole-body MR imaging: musculoskeletal applications. Radiology. 2016;279(2):345–65.

    Article  PubMed  Google Scholar 

  14. Mai PL, Khincha PP, Loud JT, DeCastro RM, Bremer RC, Peters JA, et al. Prevalence of cancer at baseline screening in the National Cancer Institute Li-Fraumeni Syndrome Cohort. JAMA Oncol. 2017;3(12):1640–5.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Saya S, Killick E, Thomas S, Taylor N, Bancroft EK, Rothwell J, et al. Baseline results from the UK SIGNIFY study: a whole-body MRI screening study in TP53 mutation carriers and matched controls. Familial Cancer. 2017;16(3):433–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Anupindi SA, Bedoya MA, Lindell RB, Rambhatla SJ, Zelley K, Nichols KE, Chauvin NA. Diagnostic performance of whole-body mri as a tool for cancer screening in children with genetic cancer-predisposing conditions. AJR Am J Roentgeno. 2015;205(2):400–8.

    Article  Google Scholar 

  17. Carter AJ, Greer ML, Gray SE, Ware RS. Mock MRI: reducing the need for anaesthesia in children. Pediatr Radiol. 2010;40(8):1368–74.

    Article  PubMed  Google Scholar 

  18. Jaimes C, Gee MS. Strategies to minimize sedation in pediatric body magnetic resonance imaging. Pediatr Radiol. 2016;46(6):916–27.

    Article  PubMed  Google Scholar 

  19. Perez M, Cuscaden C, Somers JF, Simms N, Shaheed S, Kehoe LA, et al. Easing anxiety in pediatric magnetic resonance imaging: a pilot study using animal assisted therapy. Pediatr Radiol. 2019;49(8):1000–9.

    Article  PubMed  Google Scholar 

  20. Ley S, Ley-Zaporozhan J, Schenk JP. Whole-body MRI in the pediatric patient. Eur J Radiol. 2009;70(3):442–51.

    Article  PubMed  Google Scholar 

  21. Villani A, Shore A, Wasserman JD, Stephens D, Kim RH, Druker H, et al. Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: 11 year follow-up of a prospective observational study. Lancet Oncol. 2016;17(9):1295–305.

    Article  CAS  PubMed  Google Scholar 

  22. Nievelstein RA, Littooij AS. Whole-body MRI in paediatric oncology. Radiol Med. 2016;121(5):442–53.

    Article  PubMed  Google Scholar 

  23. Lecouvet FE, Van Nieuwenhove S, Jamar F, Lhommel R, Guermazi A, Pasoglou VP. Whole-body MR imaging: the novel, “intrinsically hybrid,” approach to metastases, myeloma, lymphoma, in bones and beyond. PET Clin. 2018;13(4):505–22.

    Article  PubMed  Google Scholar 

  24. Pasoglou V, Michoux N, Peeters F, Larbi A, Tombal B, Selleslagh T, et al. Whole-body 3D T1-weighted MR imaging in patients with prostate cancer: feasibility and evaluation in screening for metastatic disease. Radiology. 2015;275(1):155–66.

    Article  PubMed  Google Scholar 

  25. Greer MC. Imaging of cancer predisposition syndromes. Pediatr Radiol. 2018;48(9):1364–75.

    Article  PubMed  Google Scholar 

  26. Chavhan GB, Alsabban Z, Babyn PS. Diffusion-weighted imaging in pediatric body MR imaging: principles, technique, and emerging applications. Radiographics. 2014;34(3):E73–88.

    Article  PubMed  Google Scholar 

  27. Albano D, La Grutta L, Grassedonio E, Patti C, Lagalla R, Midiri M, et al. Pitfalls in whole body MRI with diffusion weighted imaging performed on patients with lymphoma: what radiologists should know. Magn Reson Imaging. 2016;34(7):922–31.

    Article  PubMed  Google Scholar 

  28. Littooij AS, Kwee TC, Barber I, Granata C, de Keizer B, Beek FJ, et al. Accuracy of whole-body MRI in the assessment of splenic involvement in lymphoma. Acta Radiol. 2016;57(2):142–51.

    Article  PubMed  Google Scholar 

  29. Regacini R, Puchnick A, Luisi FAV, Lederman HM. Can diffusion-weighted whole-body MRI replace contrast-enhanced CT for initial staging of Hodgkin lymphoma in children and adolescents? Pediatr Radiol. 2018;48(5):638–47.

    Article  PubMed  Google Scholar 

  30. Leclair N, Thörmer G, Sorge I, Ritter L, Schuster V, Hirsch FW. Whole-body diffusion-weighted imaging in chronic recurrent multifocal osteomyelitis in children. PLoS One. 2016;11(1):e0147523.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Andronikou S. Invited lecture 60: MRI in the diagnosis of CNO/CRMO. Pediatr Radiol. 2018;48(Suppl 2):S432.

    Google Scholar 

  32. Aquino MR, Tse SM, Gupta S, Rachlis AC, Stimec J. Whole-body MRI of juvenile spondyloarthritis: protocols and pictorial review of characteristic patterns. Pediatr Radiol. 2015;45(5):754–62.

    Article  PubMed  Google Scholar 

  33. Kratz CP, Achatz MI, Brugières L, Frebourg T, Garber JE, Greer MC, et al. Cancer screening recommendations for individuals with li-Fraumeni syndrome. Clin Cancer Res. 2017;23(11):e38–45.

    Article  CAS  PubMed  Google Scholar 

  34. Ballinger ML, Best A, Mai PL, Khincha PP, Loud JT, Peters JA, et al. Baseline surveillance in li-fraumeni syndrome using whole-body magnetic resonance imaging: a meta-analysis. JAMA Oncol. 2017;3(12):1634–9.

    Article  PubMed  Google Scholar 

  35. Arnoldi AP, Schlett CL, Douis H, Geyer LL, Voit AM, Bleisteiner F, et al. Whole-body MRI in patients with non-bacterial osteitis: radiological findings and correlation with clinical data. Eur Radiol. 2017;27(6):2391–9.

    Article  CAS  PubMed  Google Scholar 

  36. Koh DM, Blackledge M, Padhani AR, Takahara T, Kwee TC, Leach MO, Collins DJ. Whole-body diffusion-weighted MRI: tips, tricks, and pitfalls. AJR Am J Roentgenol. 2012;199(2):252–62.

    Article  PubMed  Google Scholar 

  37. Ahlawat S, Fayad LM, Khan MS, Bredella MA, Harris GJ, Evans DG, et al. Whole body MRI committee for the REiNS International Collaboration; REiNS International Collaboration Members 2016. Current whole-body MRI applications in the neurofibromatoses: NF1, NF2, and schwannomatosis. Neurology. 2016;87(7 Suppl 1):S31–9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Weckbach S, Michaely HJ, Stemmer A, Schoenberg SO, Dinter DJ. Comparison of a new whole-body continuous-table-movement protocol versus a standard whole-body MR protocol for the assessment of multiple myeloma. Eur Radiol. 2010;20(12):2907–16.

    Article  CAS  PubMed  Google Scholar 

  39. Klenk C, Gawande R, Uslu L, Khurana A, Qiu D, Quon A, et al. Ionising radiation-free whole-body MRI versus (18)F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: a prospective, non-randomised, single-Centre study. Lancet Oncol. 2014;15(3):275–85.

    Article  PubMed  Google Scholar 

  40. Muehe AM, Feng D, von Eyben R, Luna-Fineman S, Link MP, Muthig T, et al. Safety report of ferumoxytol for magnetic resonance imaging in children and young adults. Investig Radiol. 2016;51(4):221–7.

    Article  CAS  Google Scholar 

  41. Ponisio MR, McConathy J, Laforest R, Khanna G. Evaluation of diagnostic performance of whole-body simultaneous PET/MRI in pediatric lymphoma. Pediatr Radiol. 2016;46(9):1258–68.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tijerin Bueno M, Greer ML, Malkin D, Villani A, Moineddin R. Whole body MRI in children with cancer predisposition syndromes (abstract). Pediatr Radiol. 2015;45(Suppl 1):S71.

    Google Scholar 

  43. Jongmans MC, Loeffen JL, Waanders E, Hoogerbrugge PM, Ligtenberg MJ, Kuiper RP, Hoogerbrugge N. Recognition of genetic predisposition in pediatric cancer patients: an easy-to-use selection tool. Eur J Med Genet. 2016;59(3):116–25.

    Article  PubMed  Google Scholar 

  44. Brodeur GM, Nichols KE, Plon SE, Schiffman JD, Malkin D. Pediatric cancer predisposition and surveillance: an overview, and a tribute to Alfred G. Knudson Jr. Clin Cancer Res. 2017;23(11):e1–5.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J, et al. Germline mutations in predisposition genes in pediatric cancer. N Engl J Med. 2015;373(24):2336–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Oberg JA, Glade Bender JL, Sulis ML, Pendrick D, Sierci AN, Hsiao SJ, et al. Implementation of next generation sequencing into pediatric hematology-oncology practice: moving beyond actionable alterations. Genome Med. 2016;8(1):133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Downing JR, Wilson RK, Zhang J, Mardis ER, Pui CH, Ding L, et al. The pediatric cancer genome project. Nat Genet. 2012;44(6):619–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sadowski EA, Bennett LK, Chan MR, Wentland AL, Garrett AL, Garrett RW, Djamali A. Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology. 2007;243(1):148–57.

    Article  PubMed  Google Scholar 

  49. Tibussek D, Rademacher C, Caspers J, Turowski B, Schaper J, Antoch G, Klee D. Gadolinium brain deposition after macrocyclic gadolinium administration: a pediatric case-control study. Radiology. 2017;285(1):223–30.

    Article  PubMed  Google Scholar 

  50. Davidson AJ, Disma N, de Graaff JC, Withington DE, Dorris L, Bell G, et al. Neurodevelopmental outcome at 2 years of age after general anaesthesia and awake-regional anaesthesia in infancy (GAS): an international multicentre, randomised controlled trial. Lancet. 2016;387(10015):239–50.

    Article  PubMed  Google Scholar 

  51. Druker H, Zelley K, McGee RB, Scollon SR, Kohlmann WK, Schneider KA, Wolfe Schneider K. Genetic counselor recommendations for cancer predisposition evaluation and surveillance in the pediatric oncology patient. Clin Cancer Res. 2017;23(13):e91–7.

    Article  PubMed  Google Scholar 

  52. Schmidt CO, Sierocinski E, Hegenscheid K, Baumeister SE, Grabe HJ, Völzke H. Impact of whole-body MRI in a general population study. Eur J Epidemiol. 2016;31(1):31–9.

    Article  PubMed  Google Scholar 

  53. McBride KA, Ballinger ML, Schlub TE, Young MA, Tattersall MHN, Kirk J, et al. Psychosocial morbidity in TP53 mutation carriers: is whole-body cancer screening beneficial? Familial Cancer. 2017;16(3):423–32.

    Article  CAS  PubMed  Google Scholar 

  54. Achatz MI, Zambetti GP. The inherited p53 mutation in the Brazilian population. Cold Spring Harb Perspect Med. 2016;6(12). pii: a026195.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Ballinger ML, Ferris NJ, Moodie K, Mitchell G, Shanley S, James PA, Thomas DM. Surveillance in germline TP53 mutation carriers utilizing whole-body magnetic resonance imaging. JAMA Oncol. 2017;3(12):1735–6.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Schooler GR, Davis JT, Daldrup-Link H, Frush DP. Variability in billing practices for whole-body magnetic resonance imaging: reply to Degnan et al. Pediatr Radiol. 2019;49(1):154.

    Article  PubMed  Google Scholar 

  57. Rednam SP, Erez A, Druker H, Janeway KA, Kamihara J, Kohlmann WK, et al. Von Hippel-Lindau and hereditary pheochromocytoma/paraganglioma syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res. 2017;23(12):e68–75.

    Article  CAS  PubMed  Google Scholar 

  58. Ricketts CJ, Forman JR, Rattenberry E, Bradshaw N, Lalloo F, Izatt L, et al. Tumor risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD. Hum Mutat. 2010;31(1):41–51.

    Article  CAS  PubMed  Google Scholar 

  59. Turkova H, Prodanov T, Maly M, Martucci V, Adams K, Widimsky J Jr, et al. Characteristics and outcomes of metastatic SDHB and sporadic pheochromocytoma/paraganglioma: an National Institutes of Health Study. Endocr Pract. 2016;22(3):302–14.

    Article  PubMed  Google Scholar 

  60. Assadipour Y, Sadowski SM, Alimchandani M, Quezado M, Steinberg SM, Nilubol N, et al. SDHB mutation status and tumor size but not tumor grade are important predictors of clinical outcome in pheochromocytoma and abdominal paraganglioma. Surgery. 2017;161(1):230–9.

    Article  PubMed  Google Scholar 

  61. Jasperson KW, Kohlmann W, Gammon A, Slack H, Buchmann L, Hunt J, et al. Role of rapid sequence whole-body MRI screening in SDH-associated hereditary paraganglioma families. Familial Cancer. 2014;13(2):257–65.

    Article  CAS  PubMed  Google Scholar 

  62. Ricketts CJ, Shuch B, Vocke CD, Metwalli AR, Bratslavsky G, Middelton L, et al. Succinate dehydrogenase kidney cancer: an aggressive example of the Warburg effect in cancer. J Urol. 2012;188(6):2063–71.

    Article  CAS  PubMed  Google Scholar 

  63. Bholah R, Bunchman TE. Review of pediatric pheochromocytoma and paraganglioma. Front Pediatr. 2017;5:155.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yamanaka R, Hayano A, Takashima Y. Trilateral retinoblastoma: a systematic review of 211 cases. Neurosurg Rev. 2019;42(1):39–48.

    Article  PubMed  Google Scholar 

  65. Draper GJ, Sanders BM, Brownbill PA, Hawkins MM. Patterns of risk of hereditary retinoblastoma and applications to genetic counselling. Br J Cancer. 1992;66(1):211–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Friedman DN, Lis E, Sklar CA, Oeffinger KC, Reppucci M, Fleischut MH, et al. Whole-body magnetic resonance imaging (WB-MRI) as surveillance for subsequent malignancies in survivors of hereditary retinoblastoma: a pilot study. Pediatr Blood Cancer. 2014;61(8):1440–4.

    Article  PubMed  Google Scholar 

  67. Kamihara J, Bourdeaut F, Foulkes WD, Molenaar JJ, Mossé YP, Nakagawara A, et al. Retinoblastoma and neuroblastoma predisposition and surveillance. Clin Cancer Res. 2017;23(13):e98–e106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. de Jong MC, Kors WA, de Graaf P, Castelijns JA, Kivelä T, Moll AC. Trilateral retinoblastoma: a systematic review and meta-analysis. Lancet Oncol. 2014;15(10):1157–67.

    Article  PubMed  Google Scholar 

  69. Wimmer K, Kratz CP, Vasen HF, Caron O, Colas C, Entz-Werle N, et al. Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium ‘care for CMMRD’ (C4CMMRD). J Med Genet. 2014;51(6):355–65.

    Article  CAS  PubMed  Google Scholar 

  70. Tabori U, Hansford JR, Achatz MI, Kratz CP, Plon SE, Frebourg T, Brugières L. Clinical management and tumor surveillance recommendations of inherited mismatch repair deficiency in childhood. Clin Cancer Res. 2017;23(11):e32–7.

    Article  PubMed  Google Scholar 

  71. Evans DGR, Salvador H, Chang VY, Erez A, Voss SD, Druker H, et al. Cancer and central nervous system tumor surveillance in pediatric neurofibromatosis 2 and related disorders. Clin Cancer Res. 2017;23(12):e54–61.

    Article  CAS  PubMed  Google Scholar 

  72. Evans DGR, Salvador H, Chang VY, Erez A, Voss SD, Schneider KW, et al. Cancer and central nervous system tumor surveillance in pediatric neurofibromatosis 1. Clin Cancer Res. 2017;23(12):e46–53.

    Article  PubMed  Google Scholar 

  73. Averill LW, Acikgoz G, Miller RE, Kandula VV, Epelman M. Update on pediatric leukemia and lymphoma imaging. Semin Ultrasound CT MR. 2013;34(6):578–99.

    Article  PubMed  Google Scholar 

  74. Kelly KM. Hodgkin lymphoma in children and adolescents: improving the therapeutic index. Blood. 2015;126(22):2452–8.

    Article  CAS  PubMed  Google Scholar 

  75. Littooij AS, Kwee TC, de Keizer B, Bruin MC, Coma A, Beek FJ, et al. Whole-body MRI-DWI for assessment of residual disease after completion of therapy in lymphoma: a prospective multicenter study. J Magn Reson Imaging. 2015;42(6):1646–55.

    Article  PubMed  Google Scholar 

  76. Littooij AS, Kwee TC, Barber I, Granata C, Vermoolen MA, Enriquez G, et al. Whole-body MRI for initial staging of paediatric lymphoma: prospective comparison to an FDG-PET/CT-based reference standard. Eur Radiol. 2014;24(5):1153–65.

    Article  PubMed  Google Scholar 

  77. Zaveri J, La Q, Yarmish G, Neuman J. More than just Langerhans cell histiocytosis: a radiologic review of histiocytic disorders. Radiographics. 2014;34(7):2008–24.

    Article  PubMed  Google Scholar 

  78. Tran G, Huynh TN, Paller AS. Langerhans cell histiocytosis: a neoplastic disorder driven by Ras-ERK pathway mutations. J Am Acad Dermatol. 2018;78(3):579–90.e4.

    Article  CAS  PubMed  Google Scholar 

  79. Goo HW, Yang DH, Ra YS, Song JS, Im HJ, Seo JJ, et al. Whole-body MRI of Langerhans cell histiocytosis: comparison with radiography and bone scintigraphy. Pediatr Radiol. 2006;36(10):1019–31.

    Article  PubMed  Google Scholar 

  80. Samet J, Weinstein J, Fayad LM. MRI and clinical features of Langerhans cell histiocytosis (LCH) in the pelvis and extremities: can LCH really look like anything? Skelet Radiol. 2016;45(5):607–13.

    Article  Google Scholar 

  81. Guiomar R, Pereira da Silva S, Conde P, Cristóvão P, Maia AC, Pechirra P, et al. Cross-protection to new drifted influenza a(H3) viruses and prevalence of protective antibodies to seasonal influenza, during 2014 in Portugal. Vaccine. 2017;35(16):2092–9.

    Article  PubMed  Google Scholar 

  82. Smets AM, Deurloo EE, Slager TJE, Stoker J, Bipat S. Whole-body magnetic resonance imaging for detection of skeletal metastases in children and young people with primary solid tumors – systematic review. Pediatr Radiol. 2018;48(2):241–52.

    Article  CAS  PubMed  Google Scholar 

  83. Guimarães MD, Noschang J, Teixeira SR, Santos MK, Lederman HM, Tostes V, et al. Whole-body MRI in pediatric patients with cancer. Cancer Imaging. 2017;17(1):6.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Burris NS, Johnson KM, Larson PE, Hope MD, Nagle SK, Behr SC, Hope TA. Detection of small pulmonary nodules with ultrashort echo time sequences in oncology patients by using a PET/MR system. Radiology. 2016;278(1):239–46.

    Article  PubMed  Google Scholar 

  85. Littooij AS, Kwee TC, Enríquez G, Verbeke JI, Granata C, Beishuizen A, et al. Whole-body MRI reveals high incidence of osteonecrosis in children treated for Hodgkin lymphoma. Br J Haematol. 2017;176(4):637–42.

    Article  CAS  PubMed  Google Scholar 

  86. Pratesi A, Medici A, Bresci R, Micheli A, Barni S, Pratesi C. Sickle cell-related bone marrow complications: the utility of diffusion-weighted magnetic resonance imaging. J Pediatr Hematol Oncol. 2013;35(4):329–30.

    Article  PubMed  Google Scholar 

  87. Albano D, Patti C, Sconfienza LM, Galia M. Whole-body MRI in the early detection of multifocal osteonecrosis. Br J Radiol. 2017;90(1077):20170240.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Antoon JW, Potisek NM, Lohr JA. Pediatric fever of unknown origin. Pediatr Rev. 2015;36(9):380–90; quiz 391

    Article  PubMed  Google Scholar 

  89. Lindsay AJ, Delgado J, Jaramillo D, Chauvin NA. Extended field of view magnetic resonance imaging for suspected osteomyelitis in very young children: is it useful? Pediatr Radiol. 2019;49(3):379–86.

    Article  PubMed  Google Scholar 

  90. von Kalle T, Heim N, Hospach T, Langendörfer M, Winkler P, Stuber T. Typical patterns of bone involvement in whole-body MRI of patients with chronic recurrent multifocal osteomyelitis (CRMO). Rofo. 2013;185(7):655–61.

    Article  Google Scholar 

  91. Voit AM, Arnoldi AP, Douis H, Bleisteiner F, Jansson MK, Reiser MF, et al. Whole-body magnetic resonance imaging in chronic recurrent multifocal osteomyelitis: clinical longterm assessment may underestimate activity. J Rheumatol. 2015;42(8):1455–62.

    Article  PubMed  Google Scholar 

  92. Weiss PF. Update on enthesitis-related arthritis. Curr Opin Rheumatol. 2016;28(5):530–6.

    Article  CAS  PubMed  Google Scholar 

  93. Østergaard M, Eshed I, Althoff CE, Poggenborg RP, Diekhoff T, Krabbe S, et al. Whole-body magnetic resonance imaging in inflammatory arthritis: systematic literature review and first steps toward standardization and an OMERACT scoring system. J Rheumatol. 2017;44(11):1699–705.

    Article  PubMed  Google Scholar 

  94. Perez-Rossello JM, Connolly SA, Newton AW, Zou KH, Kleinman PK. Whole-body MRI in suspected infant abuse. AJR Am J Roentgenol. 2010;195(3):744–50.

    Article  PubMed  Google Scholar 

  95. Merlini L, Carpentier M, Ferrey S, Anooshiravani M, Poletti PA, Hanquinet S. Whole-body MRI in children: would a 3D STIR sequence alone be sufficient for investigating common paediatric conditions? A comparative study. Eur J Radiol. 2017;88:155–62.

    Article  PubMed  Google Scholar 

  96. Zhen-Guo H, Min-Xing Y, Xiao-Liang C, Ran Y, He C, Bao-Xiang G, et al. Value of whole-body magnetic resonance imaging for screening multifocal osteonecrosis in patients with polymyositis/dermatomyositis. Br J Radiol. 2017;90(1073):20160780.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Thyoka M, Adekunle O, Pilkington C, Walters S, Arthurs OJ, Humphries P, et al. Introduction of a novel magnetic resonance imaging-based scoring system for assessing disease activity in children with juvenile dermatomyositis. Rheumatology (Oxford). 2018;57(9):1661–8.

    Article  CAS  Google Scholar 

  98. Huang ZG, Gao BX, Chen H, Yang MX, Chen XL, Yan R, et al. An efficacy analysis of whole-body magnetic resonance imaging in the diagnosis and follow-up of polymyositis and dermatomyositis. PLoS One. 2017;12(7):e0181069.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Quijano-Roy S, Avila-Smirnow D, Carlier RY. WB-MRI muscle study group. Whole body muscle MRI protocol: pattern recognition in early onset NM disorders. Neuromuscul Disord. 2012;22(Suppl 2):S68–84.

    Article  PubMed  Google Scholar 

  100. Hollingsworth KG, de Sousa PL, Straub V, Carlier PG. Towards harmonization of protocols for MRI outcome measures in skeletal muscle studies: consensus recommendations from two TREAT-NMD NMR workshops, 2 May 2010, Stockholm, Sweden, 1–2 October 2009, Paris, France. Neuromuscul Disord. 2012;22(Suppl 2):S54–67.

    Article  PubMed  Google Scholar 

  101. Arthurs OJ, van Rijn RR, Whitby EH, Johnson K, Miller E, Stenzel M, et al. ESPR postmortem imaging task force: where we begin. Pediatr Radiol. 2016;46(9):1363–9.

    Article  PubMed  Google Scholar 

  102. Shruthi M, Gupta N, Jana M, Mridha AR, Kumar A, Agarwal R, et al. Comparative study of conventional and virtual autopsy using postmortem MRI in the phenotypic characterization of stillbirths and malformed fetuses. Ultrasound Obstet Gynecol. 2018;51(2):236–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary-Louise C. Greer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Greer, ML.C. (2020). Whole-Body MR Imaging. In: Lee, E., Liszewski, M., Gee, M., Daltro, P., Restrepo, R. (eds) Pediatric Body MRI. Springer, Cham. https://doi.org/10.1007/978-3-030-31989-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31989-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31988-5

  • Online ISBN: 978-3-030-31989-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics