Skip to main content

Acoustic Fluidization During Impact Crater’s Formation

  • Conference paper
  • First Online:
  • 380 Accesses

Abstract

The explanation of impact crater morphology and, possibly, rock avalanche’s long runout demands a temporary dry friction reduction. We review main assumptions for one of main models proposed to explain this phenomenon, namely the acoustic fluidization (AF) model. The governing model parameter is the decay time for internal oscillations assumed to be generated in fragmented rock bodies under high strain rates, typical for growing impact craters and moving rock avalanches. Using numerous published results for impact crater on various planetary bodies with different gravity acceleration, we try to improve our understanding of some critical AF model issues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rice, J.R.: Heating and weakening of faults during earthquake slip. J. Geophys. Res. 111(B5), B05311: 1–29 (2006)

    Article  Google Scholar 

  2. Jop, P., Forterre, Y., Pouliquen, O: A constitutive law for dense granular flows. Nature 441(7094), 727–730 (2006)

    Article  ADS  Google Scholar 

  3. Melosh, H.J.: Crater modification by gravity—a mechanical analysis of slumping. In: Pepin, R.O., Merrill, R.B., Roddy, D.J. (eds.) Impact and Explosion Cratering: Planetary and Terrestrial Implications, pp. 1245–1260. Pergamon Press, NY (1977)

    Google Scholar 

  4. McKinnon, W.B.: An investigation into the role of plastic failure in crater modification. In: Lunar and Planetary Science Conference 9th (Geochimica et Cosmochimica Acta, Supplement 10), pp. 3965–3973 (1978)

    Google Scholar 

  5. Melosh, H.J.: Acoustic fluidization—a new geologic process. J. Geophys. Res. 84(B13), 7513–7520 (1979)

    Article  ADS  Google Scholar 

  6. Melosh, H.J., Ivanov, B.A.: Impact crater collapse. Annual Rev. Earth Plant. Sci. 27, 385–415 (1999)

    Article  ADS  Google Scholar 

  7. Ferriere, L., Koeberl, C., Ivanov, B.A., Reimold, W.U.: Shock metamorphism of Bosumtwi impact crater rocks, shock attenuation, and uplift formation. Science 322(5908), 1678–1681 (2008)

    Article  ADS  Google Scholar 

  8. Ivanov, B.A., Stöffler, D.: The Steinheim impact crater, Germany: modeling of a complex crater with central Uplift. In: 36th Annual Lunar and Planetary Science Conference. Abs. #1443. LPI, Houston, TX (2005)

    Google Scholar 

  9. Ivanov, B.A.: Deep drilling results and numerical modeling: Puchezh-Katunki impact crater, Russia. In: Proceedings of Lunar and Planetary Science Conference, Abs. #1286. Lunar and Planetary Institute, Houston, TX (2002)

    Google Scholar 

  10. Collins, G.S., Kenkmann, T., Osinski, G.R., Wunnemann, K.: Mid-sized complex crater formation in mixed crystalline-sedimentary targets: Insight from modeling and observation. Meteorit. Planet. Sci. 43(12), 1955–1977 (2008)

    Article  ADS  Google Scholar 

  11. Rae, A.S.P., Collins, G.S., Grieve, R.A.F., Osinski, G.R., Morgan, J.V.: Complex crater formation: insights from combining observations of shock pressure distribution with numerical models at the West Clearwater Lake impact structure. Meteorit. Planet. Sci. 52(7), 1330–1350 (2017)

    Article  ADS  Google Scholar 

  12. Ivanov, B.A.: Numerical modeling of the largest terrestrial meteorite craters. Sol. Syst. Res. 39(5), 381–409 (2005)

    Article  ADS  Google Scholar 

  13. Morgan, J.V., Gulick, S.P.S., Bralower, T., Chenot, E., Christeson, G., Claeys, P., Cockell, C., Collins, G.S., Coolen, M.J.L., Ferrière, L., Gebhardt, C., Goto, K., Jones, H., Kring, D.A., Le Ber, E., Lofi, J., Long, X., Lowery, C., Mellett, C., Ocampo-Torres, R., Osinski, G.R., Perez-Cruz, L., Pickersgill, A., Poelchau, M., Rae, A., Rasmussen, C., Rebolledo-Vieyra, M., Riller, U., Sato, H., Schmitt, D.R., Smit, J., Tikoo, S., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M., Wittmann, A., Yamaguchi, K.E., Zylberman, W.: The formation of peak rings in large impact craters. Science 354(6314), 878–882 (2016)

    Article  ADS  Google Scholar 

  14. Melosh, H.J: Impact Cratering—A Geologic Process, 245 pp. Oxford, New York (1989)

    Google Scholar 

  15. Collins, G.S., Melosh, H.J., Ivanov, B.A.: Modeling damage and deformation in impact simulations. Meteorit. Planet. Sci. 39(2), 217–231 (2004)

    Article  ADS  Google Scholar 

  16. Ivanov, B.: Geologic Effects of Large Terrestrial Impact Crater Formation. In: Adushkin, V.V., Nemchinov, I.V. (eds.) Catastrophic Events Caused by Cosmic Objects, pp. 163–205. Springer, Berlin (2008)

    Google Scholar 

  17. Silber, E.A., Osinski, G.R., Johnson, B.C., Grieve, R.A.F.: Effect of impact velocity and acoustic fluidization on the simple-to-complex transition of lunar craters. J. Geophys. Res. Planets 122(5), 800–821 (2017)

    Article  ADS  Google Scholar 

  18. Ivanov, B.A., Melosh, H.J., Pierazzo, E.: Basin-forming impacts: Reconnaissance modeling. In: Gibson, R.L., Reimold, W.U. (eds.) GSA Special Papers 465, pp. 29–49. Geological Society of America, Boulder, Colorado, USA (2010)

    Google Scholar 

  19. Kring, D.A., Kramer, G.Y., Collins, G.S., Potter, R.W.K., Chandnani, M.: Peak-ring structure and kinematics from a multi-disciplinary study of the Schrödinger impact basin. Nat. Commun. 7 (Article #13161), 1–10 (2016)

    Google Scholar 

  20. Parker, M.V.K., Zegers, T., Kneissl, T., Ivanov, B., Foing, B., Neukum, G.: 3D structure of the Gusev crater region. Earth Plan. Sci. Lett. 294(3–4), 411–423 (2010)

    Article  ADS  Google Scholar 

  21. Schenk, P., et al.: The geologically recent giant impact basins at Vesta’s south pole. Science 336, 694–697 (2012)

    Article  ADS  Google Scholar 

  22. Hiesinger, H., Marchi, S., Schmedemann, N., Schenk, P., Pasckert, J. H., Neesemann, A., O’Brien, D. P., Kneissl, T., Ermakov, A.I., Fu, R.R., Bland, M.T., Nathues, A., Platz, T., Williams, D.A., Jaumann, R., Castillo-Rogez, J.C., Ruesch, O., Schmidt, B., Park, R.S., Preusker, F., Buczkowski, D.L., Russell, C.T., Raymond, C.A.: Cratering on ceres: implications for its crust and evolution. Science 353(6303), aaf4759, 1–8 (2016)

    Article  ADS  Google Scholar 

  23. Kramer, G.Y., Schenk, P.: Morphologies of Fresh Craters, Lunar Analogs, and the Simple-Complex Transition on Vesta, in 46th Lunar and Planetary Science Conference, Abs. #2571. LPI, Woodland, TX (2015)

    Google Scholar 

  24. Ivanov, B.A., Melosh, H.J.: Two-dimensional numerical modeling of the Rheasilvia impact formation. J. Geophys. Res. Planets 118(7), 1545–1557 (2013)

    Article  ADS  Google Scholar 

  25. Wünnemann, K., Ivanov, B.A.: Numerical modelling of the impact crater depth–diameter dependence in an acoustically fluidized target. Planet. Space Sci. 51(13), 831–845 (2003)

    Article  ADS  Google Scholar 

  26. Melosh, H.J.: The physics of very large landslides. Acta Mech. 64(1), 89–99 (1986)

    Article  Google Scholar 

  27. Ivanov, B.A., Artemieva, N.A.: Numerical modeling of the formation of large impact craters. In: Koeberl C., MacLeod K. (eds.) Catastrophic Events and Mass Extinctions: Impact and Beyond, Geological Society of America Special Papers 356, pp. 619–630, GSA, Boulder, Colorado (2002)

    Google Scholar 

  28. Croft, S.K.: The scaling of complex craters. J. Geophys. Res. 90, C828–C842 (1985)

    Article  Google Scholar 

  29. Werner, S.C., Ivanov, B.A.: Exogenic dynamics, cratering, and surface ages (Chapter 10.10). In: Schubert, G. (ed.) Treatise on Geophysics, 2nd edn, pp. 327–365. Elsevier, Oxford (2015)

    Chapter  Google Scholar 

  30. Pike, R. J.: Control of crater morphology by gravity and target type—mars, earth, moon. In: Proceedings of the Lunar and Planetary Science Conference 11th, pp. 2159–2189. Pergamon Press, New York (1980)

    Google Scholar 

Download references

Acknowledgements

The work is supported with the Russian Academy of Science project “Origin and evolution of Space studied with telescopic observations and space missions” (the former Program 28 and Program 12). The author thanks an anonymous reviewer who’s comments sufficiently improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Ivanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ivanov, B. (2019). Acoustic Fluidization During Impact Crater’s Formation. In: Kocharyan, G., Lyakhov, A. (eds) Trigger Effects in Geosystems. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-31970-0_52

Download citation

Publish with us

Policies and ethics