Skip to main content

Application of Nanotechnology for Sustainable Crop Production Systems

  • Chapter
  • First Online:
Nanotechnology for Food, Agriculture, and Environment

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

In relation to other applied sciences, nanotechnology has a great potential for sustainability of crop production in the era of climate change. In the present chapter, we highlighted that nanomaterials such as nanofertilizers, nanopesticides, nanocarriers, nanosensors, nano-packaging and nano-chips can be potentially used to improve the crop productivity. The use of nanomaterials reduces the amount of sprayed agrochemicals by smart delivery of active ingredients, minimizes nutrient losses in fertilization and increases yields through optimized water and nutrient management. Similarly, nanosensors can increase water, nutrient and chemical use efficiency. Therefore, it is an eco-friendly and economically viable tool. Nanotechnology-led innovations are also being used in plant improvement and genomic transformation programmes. New nanoparticles from biomasses such as highly porous nano-carbon for lignocellulosic fibre jute remarkably add high value to the agricultural produces and processed materials. Therefore, applied research-based potential use of nanotechnology is needed for sustainable crop production systems under the changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Aziz HMM, Hasaneen MNA, Omer AM (2016) Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Span J Agric Res 14(1):e0902. https://doi.org/10.5424/sjar/2016141-8205

    Article  Google Scholar 

  • Abdellatif KF, Abdelfattah RH, El-Ansary MSM (2016) Green nanoparticles engineering on root-knot nematode infecting eggplants and their effect on plant DNA modification. Iran J Biotechnol 14(4):250–259

    Article  PubMed  PubMed Central  Google Scholar 

  • Abubakar A, Bala AY, Singh K (2017) Plant molluscicides and their modes of action: a review. Int J Sci Res Technol 2(1):37–49

    Google Scholar 

  • Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7(1):17–28

    Article  CAS  PubMed  Google Scholar 

  • Ali MA, Rehman I, Iqbal A, Din S, Rao AQ, Latif A, Samiullah TR, Azam S, Husnain T (2014) Nanotechnology, a new frontier in agriculture. Adv Life Sci 1(3):129–138

    Google Scholar 

  • Almutairi ZM, Alharbi A (2015) Effect of silver nanoparticles on seed germination of crop plants. Int J Nucl Quantum Engg 9(6):594–598

    Google Scholar 

  • Angelakis E, Azhar EI, Bibi F, Yasir M, Al-Ghamdi AK, Ashshi AM, Elshemi AG, Raoult D (2014) Paper money and coins as 772 potential vectors of transmissible disease. Future Microbiol 9(773):249–261

    Article  CAS  PubMed  Google Scholar 

  • Antonoglou O, Moustaka J, Adamakis ID, Sperdouli I, Pantazaki AA, Moustakas M, Dendrinou-Samara C (2018) Nanobrass CuZn nanoparticles as foliar spray nonphytotoxic fungicides. ACS Appl Mater Interfaces 10(5):4450–4461

    Article  CAS  PubMed  Google Scholar 

  • Araújoa R, Castrob ACM, Fiúza A (2015) The use of nanoparticles in soil and water remediation processes. Mater Today: Proceed 2:315–320

    Google Scholar 

  • Askary M, Amirjani MR, Saberi T (2016) Comparison of the effects of nano-iron fertilizer with iron-chelate on growth parameters and some biochemical properties of Catharanthus roseus. J Plant Nutr 40(7):974–982

    Article  CAS  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbiol Cell Fact 13:66. https://doi.org/10.1186/1475-2859-13-66

    Article  Google Scholar 

  • Bhateria R, Jain D (2016) Water quality assessment of lake water: a review. Sust Water Resour Manage 2(2):161–173

    Article  Google Scholar 

  • Boehm AL, Martinon I, Zerrouk R, Rump E, Fessi H (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20(4):433–441

    Article  CAS  PubMed  Google Scholar 

  • Bootharaju MS, Pradeep T (2012) Understanding the degradation pathway of the pesticide, chlorpyrifos by noble metal nanoparticles. Langmuir 28(5):2671–2679

    Article  CAS  PubMed  Google Scholar 

  • Boxall AB, Tiede K, Chaudhry Q (2007) Engineered nanomaterials in soils and water: how do they behave and could they pose a risk to human health? Nanomedicine 2:919–927

    Article  CAS  PubMed  Google Scholar 

  • Brumfiel G (2003) Nanotechnology: a little knowledge. Nature 424:246–248

    Article  CAS  PubMed  Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8(3):559–568

    Article  Google Scholar 

  • Chareonviriyaphap T, Bangs MJ, Suwonkerd W, Kongmee M, Corbel V, Ngoen-Klan R (2013) Review of insecticide resistance and behavioural avoidance of vectors of human diseases in Thailand. Parasitol Vectors 6:280. https://doi.org/10.1186/1756-3305-6-280

    Article  CAS  Google Scholar 

  • Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15(1):15–22

    Article  CAS  Google Scholar 

  • Chhipa H, Joshi P (2016) Nanofertilisers, nanopesticides and nanosensors in agriculture. In: Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience in food and agriculture, vol 1. Sustainable Agriculture Reviews. Springer, Cham, pp 247–282

    Chapter  Google Scholar 

  • Coelho P, Caldeira R (2016) Critical analysis of molluscicide application in schistosomiasis control programs in Brazil. Infect Dis Poverty 5:57. https://doi.org/10.1186/s40249-016-0153-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Clare N, Linda A, Guillaume G (2011) Agricultural, food, and water nanotechnologies for the poor: opportunities, constraints, and role of the consultative group on international agricultural research. The International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Cromwell WA, Yang J, Starr JL, Jo YK (2014) Nematicidal effects of silver nanoparticles on root-knot nematode in bermudagrass. J Nematol 46(3):261–266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Das DK, Mandal M (2015) Advanced technology of fertilizer uses for crop production. In: Sinha S, Pant KK, Bajpai S (eds) Fertilizer technology, vol 1. Synthesis. Studium Press LLC, Houston, pp 19–67

    Google Scholar 

  • De A, Bose R, Kumar A, Mozumdar S (2014) Targeted delivery of pesticides using biodegradable polymeric nanoparticles. Springer, New Delhi

    Book  Google Scholar 

  • DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5(2):91. https://doi.org/10.1038/nnano.2010.2

    Article  CAS  PubMed  Google Scholar 

  • Diallo M, Brinker CJ (2011) Nanotechnology for sustainability: environment, water, food, minerals, and climate. In: Roco MC, Hersam MC, Mirkin CA (eds) Nanotechnology research directions for societal needs in 2020. Springer, Dordrecht, pp 221–259

    Chapter  Google Scholar 

  • Dimetry NZ, Hussein HM (2016) Role of nanotechnology in agriculture with special reference to pest control. Int J Pharm Technol Res 9:121–144

    CAS  Google Scholar 

  • Dimkpa CO, Bindraban PS (2017) Nanofertilizers: new products for the industry? J Agric Food Chem 66(26):6462–6473

    Article  PubMed  CAS  Google Scholar 

  • Ditta A, Arsha M, Ibrahim M (2015) Nanoparticles in sustainable agricultural crop production: applications and perspectives. In: Siddiqui M, Al-Whaibi M, Mohammad F (eds) Nanotechnology and plant sciences. Springer, Cham, pp 55–75

    Google Scholar 

  • Dong W, Zhang X, Wang H, Dai X, Sun X, Qiu W, Yang F (2012) Effect of different fertilizer application on the soil fertility of paddy soils in red soil region of southern China. PLoS One 7(9):e44504. https://doi.org/10.1371/journal.pone.0044504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monitor 13(4):822–828

    Article  CAS  Google Scholar 

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Article  Google Scholar 

  • Elek N, Hoffman R, Raviv U, Resh R, Ishaaya I, Magdassi S (2010) Novaluron nanoparticles: formation and potential use in controlling agricultural insect pests. Coll Surfaces A: Physicochem Engg Aspects 372(1–3):66–72

    Article  CAS  Google Scholar 

  • Enciu D, Toader A, Ursu I (2014) Magnetic field nanosensor based on Mn impurities. Incas Bulletin 6(2):51–60

    Article  Google Scholar 

  • FAO (2017) The future of food and agriculture – trends and challenges. Food and Agriculture Organization, Rome

    Google Scholar 

  • FAO (Food and Agriculture Organization) (2009). Sustainable crop production intensification. Available at http://www.fao.org/agriculture/crops/core-themes/theme/spi/scpi-home/framework/sustainable-intensification-in-fao/en/. Accessed 27 July 2018

  • Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20. https://doi.org/10.3389/fenvs.2016.00020

    Article  Google Scholar 

  • Gautam RK, Mudhoo A, Lofrano G, Chattopadhyaya MC (2014) Biomass-derived biosorbents for metal ions sequestration: adsorbent modification and activation methods and adsorbent regeneration. J Environ Chem Engg 2(1):239–259

    Article  CAS  Google Scholar 

  • Ge S, Zhang L, Zhang Y, Lan F, Yan M, Yu J (2017) Nanomaterials-modified cellulose paper as a platform for biosensing applications. Nanoscale 9(13):4366–4382

    Article  CAS  PubMed  Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792

    Article  CAS  PubMed  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modelled environmental concentrations of engineered nanomaterials (TiO2, ZnO, ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  PubMed  Google Scholar 

  • Grillo R, Oliveira HC, Lima R, Fraceto LF (2015) Polymeric nanoparticles as carrier systems for herbicides. J Nanomed Nanotechnol 6(4). https://doi.org/10.4172/2157-7439.S1.022

  • Gruere G, Narrod C, Abbott L (2013) Agriculture, food, and water nanotechnologies for the poor opportunities and constraints. International Food Policy Research Institute (IFPRI), Washington, DC

    Google Scholar 

  • Guang XY, Wang JJ, He ZG, Chen GX, Ding L, Dai JJ, Yang XH (2013) Molluscicidal effects of nano-silver biological molluscicide and niclosamide. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 25(5):503–505

    CAS  PubMed  Google Scholar 

  • Hassall KA (1965) Pesticides: their properties, uses and disadvantages: part I: general introduction; insecticides and related compounds. British Vet J 121(3):105–118

    Article  CAS  Google Scholar 

  • Halford B (2005) Nano dictionary. Chem Engg News 83(15):31

    Article  Google Scholar 

  • Hornyak GL, Dutta J, Tibbals HF, Rao AK (2008) Introduction to nanoscience and nanotechnology. CRC Press, Boca Raton, p 1640. https://doi.org/10.1201/9781420047806

    Book  Google Scholar 

  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18(10):105104. https://doi.org/10.1088/0957-4484/18/10/105104

    Article  CAS  Google Scholar 

  • Iqbal M, Li C, Jiang B, Hossain MSA, Islam MT, Henzie J, Yamauchi Y (2017) Tethering mesoporous Pd nanoparticles to reduced graphene oxide sheets forms highly efficient electrooxidation catalysts. J Mater Chem A 5:21249–21256

    Article  CAS  Google Scholar 

  • Ismail M, Prasad R, Ibrahim AIM, Ahmed ISA (2017) Modern prospects of nanotechnology in plant pathology. In: Nanotechnology (eds. Prasad R, Kumar M, Kumar V), Springer Nature Singapore Pte Ltd. 305–317

    Google Scholar 

  • Islam MS, Akter N, Rahman MM, Shi C, Islam MT, Zeng H, Azam MS (2018) Mussel-inspired immobilization of silver nanoparticles toward antimicrobial cellulose paper. ACS Sustain Chem Engg 6(7):9178–9188

    Article  CAS  Google Scholar 

  • Jin R (2012) The impacts of nanotechnology on catalysis by precious metal nanoparticles. Nanotechnol Rev 1(1):31–56

    Article  CAS  Google Scholar 

  • Jhanzab HM, Razzaq A, Jilani G, Rehman A, Hafeez A, Yasmeen F (2015) Silver nano-particles enhance the growth, yield and nutrient use efficiency of wheat. Int J Agron Agri Res 7(1):15–22

    Google Scholar 

  • Jiang B, Li C, Dag O, Abe H, Takei T, Imai T, Hossain MSA, Islam MT, Wood K, Henzie J, Yamauchi Y (2017) Mesoporous metallic rhodium nanoparticles. Nat Commun 8:15581. https://doi.org/10.1038/ncomms15581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jie H, Jose RP, Jorge LG (2013) Nanomaterials in agricultural production: benefits and possible threats? Sustainable nanotechnology and the environment: advances and achievements. American Chemical Society, USA, pp 73–90

    Google Scholar 

  • Kah M, Kookana RS, Gogos A, Bucheli TD (2018) A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol 13:677–684

    Article  CAS  PubMed  Google Scholar 

  • Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Persp 117(12):1813. https://doi.org/10.1289/ehp.0900793

    Article  Google Scholar 

  • Khan JH, Lin J, Young C, Matsagar BM, Wu KC, Dhepe PL, Islam MT, Rahman M, Shrestha LK, Alshehri SM, Ahamad T (2018) High surface area nanoporous carbon derived from Bangladeshi jute. Mater Chem Phys 216(1):491–495

    Article  CAS  Google Scholar 

  • Khiyami MA, Almoammar H, Awad YM, Alghuthaymi MA, Abd-Elsalam KA (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28(5):775–785

    Article  PubMed  PubMed Central  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Kelly KL (2004) Nanotechnology grows up. Science 304:1732–17345

    Article  Google Scholar 

  • Kottegoda N, Sandaruwan C, Priyadarshana G, Siriwardhana A, Rathnayake UA, Arachchige DMB, Kumarasinghe AR, Dahanayake D, Karunaratne V, Amaratunga GA (2017) Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 11(2):1214–1221

    Article  CAS  PubMed  Google Scholar 

  • Krishna AK, Satyanarayanan M, Govil PK (2009) Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: a case study from Patancheru, Medak District, Andhra Pradesh, India. J Hazard Mater 167(1–3):366–373

    Article  CAS  PubMed  Google Scholar 

  • Kumar GD, Natarajan N, Nakkeeran S (2016) Antifungal activity of nanofungicide Trifloxystrobin 25% + Tebuconazole 50% against Macrophomina phaseolina. Afr J Microbiol Res 10(4):100–105

    Article  CAS  Google Scholar 

  • Kumar M, Shamsi TN, Parveen R, Fatima S (2017) Application of nanotechnology in enhancement of crop productivity and integrated pest management. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer, Singapore, pp 361–371

    Chapter  Google Scholar 

  • Kutz FW, Wood PH, Bottimore DP (1991) Organochlorine pesticides and polychlorinated biphenyls in human adipose tissue. Rev Environ Contam Toxicol 120:1–82

    Article  CAS  PubMed  Google Scholar 

  • Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya MV (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interf 5(16):7965–7973

    Article  CAS  Google Scholar 

  • Li XQ, Elliott DW, Zhang WX (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mater Sci 31(4):111–122

    Article  CAS  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  PubMed  Google Scholar 

  • Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P (2017) Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci Rep 7:8263. https://doi.org/10.1038/s41598-017-08669-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmoodi P, Yarnia M, Amirnia R, Tarinejad A, Mahmoodi H (2017) Comparison of the effect of nano urea and nono iron fertilizers with common chemical fertilizers on some growth traits and essential oil production of Borago officinalis L. Dairy Vet Sci J 2(2):555585. https://doi.org/10.19080/JDVS.2017.02.555585

    Article  Google Scholar 

  • Manjunatha SB, Biradar DP, Aladakatti YR (2016) Nanotechnology and its applications in agriculture: a review. J Farm Sci 29(1):1–13

    Google Scholar 

  • McGehee DL, Lahiani MH, Irin F, Green MJ, Khodakovskaya MV (2017) Multiwalled carbon nanotubes dramatically affect the fruit metabolome of exposed tomato plants. ACS Appl Mater Interfaces 9(38):32430–32435

    Article  CAS  PubMed  Google Scholar 

  • Mehrazar E, Rahaie M, Rahaie S (2015) Application of nanoparticles for pesticides, herbicides, fertilisers and animals feed management. Int J Nanopart 8(1):1–9

    Article  CAS  Google Scholar 

  • Morales-Díaz AB, Ortega-Ortíz H, Juárez-Maldonado A, Cadenas-Pliego G, González-Morales S, Benavides-Mendoza A (2017) Application of nanoelements in plant nutrition and its impact in ecosystems. Adv Nat Sci Nanosci Nanotechnol 8:13001. https://doi.org/10.1088/2043-6254/8/1/013001

    Article  CAS  Google Scholar 

  • Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7:172. https://doi.org/10.3389/fpls.2016.00172

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakache E, Poulain N, Candau F, Orecchioni AM, Irache JM (1999) Biopolymer and polymer nanoparticles and their biomedical applications. In: Nalwa HS (ed) Handbook of nanostructured materials and nanotechnology. Academic Press, New York, p 3461

    Google Scholar 

  • Naseri N, Valizadeh H, Zakeri-Milani P (2015) Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull 5(3):305–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neethirajan S, Jayas DS (2011) Nanotechnology for the food and bioprocessing industries. Food Bioproc Technol 4(1):39–47

    Article  CAS  Google Scholar 

  • Ntalli NG, Caboni P (2012) Botanical nematicides: a review. J Agric Food Chem 60(40):9929–9940

    Article  CAS  PubMed  Google Scholar 

  • Nuruzzaman M, Rahman MM, Liu Y, Naidu R (2016) Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem 64(7):1447–1483

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira JL, Campos EVR, da Silva CMG, Pasquoto T, Lima R, Fraceto LF (2015) Solid lipid nanoparticles co-loaded with simazine and atrazine: preparation, characterization, and evaluation of herbicidal activity. J Agric Food Chem 63(2):422–432

    Article  PubMed  CAS  Google Scholar 

  • Oliveira HC, Stolf-Moreira R, Martinez CBR, Grillo R, de Jesus MB, Fraceto LF (2015) Nanoencapsulation enhances the post-emergence herbicidal activity of atrazine against mustard plants. PLoS One 10(7):e0132971. https://doi.org/10.1371/journal.pone.0132971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omobhude ME, Morenikeji OA, Oyeyemi OT (2017) Molluscicidal activities of curcumin-nisin polylactic acid nanoparticle on Biomphalaria pfeifferi. PLoS Negl Trop Dis 11(8):e0005855. https://doi.org/10.1371/journal.pntd.0005855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouda SM (2014) Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Res J Microbiol 9(1):34–42

    Article  CAS  Google Scholar 

  • Pandey S, Giri K, Kumar R, Mishra G, Rishi RR (2016) Nanopesticides: opportunities in crop protection and associated environmental risks. Proceed Nat Acad Sci India Sec B Biol Sci 2016:1–22

    Google Scholar 

  • Parisi C, Vigani M, Rodríguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10(2):124–127

    Article  CAS  Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:25–34

    Google Scholar 

  • Pereira AES, Sandoval-Herrera IE, Zavala-Betancourt SA, Oliveira HC, Ledezma-Pérez AS, Romero J, Fraceto LF (2017) γ-Polyglutamic acid/chitosan nanoparticles for the plant growth regulator gibberellic acid: characterization and evaluation of biological activity. Carbohydr Polym 157:1862–1873

    Article  CAS  PubMed  Google Scholar 

  • Pierluigi C, Robert ES, John EC (2003) Phenylpyrazole insecticide photochemistry, metabolism and GABAergic action: ethiprole compared with fipronil. J Agri Food Chem 51:7055–7061

    Article  CAS  Google Scholar 

  • Pourkhaloee A, Haghighi M, Saharkhiz MJ, Jouzi H, Doroodmand MM (2011) Carbon nanotubes can promote seed germination via seed coat penetration. Seed Technol 33:155–169

    Google Scholar 

  • Pradeep T (2012) Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517(24):6441–6478

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Kumar V, Kumar M, Choudhary D (2019) Nanobiotechnology in Bioformulations. Springer International Publishing (ISBN 978-3-030-17061-5) https://www.springer.com/gp/book/9783030170608

  • Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol 3:315–324

    Article  CAS  Google Scholar 

  • Rani M, Shanker U, Jassal V (2017) Recent strategies for removal and degradation of persistent and toxic organochlorine pesticides using nanoparticles: a review. J Environ Manag 190:208–2022

    Article  CAS  Google Scholar 

  • Raliya R, Tarafdar JC, Gulecha K, Choudhary K, Ram R, Mal P, Saran RP (2013) Scope of nanoscience and nanotechnology in agriculture. J Appl Biol Biotechnol 1:41–44

    Google Scholar 

  • Raliya R, Saharan V, Dimkpa C, Biswas P (2017) Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J Agric Food Chem 66(26):6487–6503

    Article  PubMed  CAS  Google Scholar 

  • Rizwan MD, Singh M, Mitra CK, Morve RK (2014) Eco-friendly application of nanomaterials: Nanobioremediation. J Nanopart 431787(7). https://doi.org/10.1155/2014/431787

    Article  CAS  Google Scholar 

  • Rolando CA, Garrett LG, Baillie BR, Wat MS (2013) A survey of herbicide use and a review of environmental fate in New Zealand planted forests. New Zealand J Forest Sci 43:17. https://doi.org/10.1186/1179-5395-43-17

    Article  Google Scholar 

  • Sánchez-Moreno S, Alonso-Prados E, Alonso-Prados JL, García-Baudín JM (2009) Multivariate analysis of toxicological and environmental properties of soil nematicides. Pest Manag Sci 65(1):82–92

    Article  PubMed  CAS  Google Scholar 

  • Sargent Jr JF (2011) Nanotechnology and environmental health and safety: issues for consideration. CRS Report for Congress, Congressional Research Service, 7-5700, www.crs.gov, RL34614, p 37

  • Sarlak N, Taherifar A, Salehi F (2014) Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. J Agric Food Chem 62(21):4833–4838

    Article  CAS  PubMed  Google Scholar 

  • Salinas S, Mosquera N, Yate L, Coy E, Yamhure G, González E (2014) Surface plasmon resonance nanosensor for the detection of arsenic in water. Sens Transducers 183(12):97–102

    CAS  Google Scholar 

  • Sastry RK, Rashmi HB, Rao NH (2011) Nanotechnology for enhancing food security in India. Food Policy 36(3):391–400

    Article  Google Scholar 

  • Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and Agri-food systems. J Sci Food Agric 15:22–44

    Google Scholar 

  • Sekhon BS (2014) Nanotechnology in Agri-food production: an overview. Nanotechnol Sci Appl 7:31–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Sempeho SI, Kim HT, Mubofu E, Hilonga A (2014) Meticulous overview on the controlled release fertilizers. Adv Chem 363071:16. https://doi.org/10.1155/2014/363071

    Article  Google Scholar 

  • Servin A, Elmer W, Mukherjee A, De La Torre-Roche R, Hamdi H, White JC, Bindraban P, Dimkpa C (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 117(2):92. https://doi.org/10.1007/s11051-015-2907-7

    Article  CAS  Google Scholar 

  • Service RF (2003) Nanomaterials show signs of toxicity. Science 300:243

    Article  PubMed  Google Scholar 

  • Singh NB, Amist N, Yadav K, Singh D, Pandey JK, Singh SC (2013) Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. J Nanoeng Nanomanuf 3:353–364

    Article  CAS  Google Scholar 

  • Sharma HD, Reddy KR (2004) Geo-environmental engineering: site remediation, waste containment, and emerging waste management technologies. Wiley, Hoboken

    Google Scholar 

  • Si Y, Zhang Z, Wu W, Fu Q, Huang K, Nitin N, Ding B, Sun G (2018) Daylight-driven rechargeable antibacterial and antiviral nanofibrous membranes for bioprotective applications. Sci Adv 4(3):eaar5931. https://doi.org/10.1126/sciadv.aar5931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siafaka PI, Okur NU, Karavas E, Bikiaris DN (2016) Surface modified multifunctional and stimuli responsive nanoparticles for drug targeting: current status and uses. Int J Mol Sci 17(9):1440. https://doi.org/10.3390/ijms17091440

    Article  CAS  PubMed Central  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY (2015) Role of nanoparticles in plants. In: Siddiqui MH, Al-Whaibi MH, Firoz M (eds) Nanotechnology and plant sciences. Springer, Switzerland, p 303

    Google Scholar 

  • Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ Sci Pollut Res 10(2):126–139

    Article  CAS  Google Scholar 

  • Smith VH, Joye SB, Howarth RW (2006) Eutrophication of freshwater and marine ecosystems. Limnol Oceanogr-Meth 51(1–2):351–355

    Article  CAS  Google Scholar 

  • Soko W, Chimbari MJ, Mukaratirwa S (2015) Insecticide resistance in malaria-transmitting mosquitoes in Zimbabwe: a review. Infect Dis Poverty 4:46. https://doi.org/10.1186/s40249-015-0076-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Song Y, Li Y, Xu Q, Liu Z (2017) Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges, and outlook. Int J Nanomedicine 12:87–110

    Article  CAS  PubMed  Google Scholar 

  • Suman PR, Jain VK, Varma A (2010) Role of nanomaterials in symbiotic fungus growth enhancement. Curr Sci 99:1189–1191

    Google Scholar 

  • Thatai S, Khurana P, Boken J, Prasad S, Kumar D (2014) Nanoparticles and core–shell nanocomposite based new generation water remediation materials and analytical techniques: a review. Microchem J 116:62–76

    Article  CAS  Google Scholar 

  • Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2(5):295. https://doi.org/10.1038/nnano.2007.108

    Article  CAS  PubMed  Google Scholar 

  • Ul-Islam M, Khan T, Park JK (2012) Nanoreinforced bacterial cellulose–montmorillonite composites for biomedical applications. Carbohydr Polym 4:1189–1197

    Article  CAS  Google Scholar 

  • US (EPA) Environmental Protection Agency (2007) Nanotechnology white paper. EPA, Washington, DC. http://www.epa.gov/osainter/pdfs/nanotech/epa-nanotechnologywhitepaper-0207.pdf. Accessed 26 June 2018

    Google Scholar 

  • US Department of Agriculture (2002) Nanoscale science and engineering for agriculture and food systems. United States Department of Agriculture, National Planning Workshop, November 18–19, 2002, Washington, DC

    Google Scholar 

  • Wang X, Xie H (2018) A review on applications of remote sensing and geographic information systems (GIS) in water resources and flood risk management. Water 10(5):608. https://doi.org/10.3390/w10050608

    Article  Google Scholar 

  • Watson JG (1996) Physical/chemical treatment of organically contaminated soils and sediments. J Air Waste Manage Assoc 46(10):993–1003

    Article  CAS  Google Scholar 

  • Walters JP, Archer DW, Sassenrath GF, Hendrickson JR, Hanson JD, Halloran JM, Vadas P, Alarcon VJ (2016) Exploring agricultural production systems and their fundamental components with system dynamics modelling. Ecol Model 333(10):51–65

    Article  Google Scholar 

  • Wu SG, Huang L, Head J, Ball M, Tang YJ, Chen D-R (2014) Electrospray facilitates the germination of plant seeds. Aerosol Air Qual Res 14:632–641

    Article  CAS  Google Scholar 

  • Wu H, Santana I, Dansie J, Giraldo JP (2017) In vivo delivery of nanoparticles into plant leaves. Curr Protoc Chem Biol 9(4):269–284

    Article  CAS  PubMed  Google Scholar 

  • Xing G, Cao Y, Shi S, Sun G, Du L, Zhu J (2001) N pollution sources and denitrification in water bodies in Taihu Lake region. Sci China Ser B: Chem 44(3):304–314

    Article  CAS  Google Scholar 

  • Xingmao M, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles ENPs and plants: Phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061

    Article  CAS  Google Scholar 

  • Yang C, Hamel C, Vujanovic V, Gan Y (2011) Fungicide: modes of action and possible impact on non-target microorganisms. ISRN Ecol 130289:8. https://doi.org/10.5402/2011/130289

    Article  CAS  Google Scholar 

  • Yao Z, Li J, Xie H, Yu C (2012) Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ Sci 16:722–729

    Article  CAS  Google Scholar 

  • Yuce M, Kurt H (2017) How to make nanobiosensors: surface modification and characterisation of nanomaterials for biosensing applications. RSC Adv 7:49386. https://doi.org/10.1039/C7RA10479K

    Article  Google Scholar 

  • Zargar M, Hamid AA, Bakar FA, Shamsudin MN, Shameli K, Jahanshiri F (2011) Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L. Molecules 16(8):6667–6676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaytseva O, Neumann G (2016) Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chem Biol Technol Agric 3:17. https://doi.org/10.1186/s40538-016-0070-8

    Article  CAS  Google Scholar 

  • Zhang W (2003) Environmental technologies at the nanoscale. Environ Sci Technol 7:103–108

    Google Scholar 

  • Zhao X, Cui H, Wang Y, Sun C, Cui B, Zeng Z (2017) Development strategies and prospects of nano-based smart pesticide formulation. J Agric Food Chem 66(26):6504–6512

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the Government of Bangladesh for partially funding this work through a HEQEP CPSF#2071 to the Department of Biotechnology of Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hossain, A., Kerry, R.G., Farooq, M., Abdullah, N., Tofazzal Islam, M. (2020). Application of Nanotechnology for Sustainable Crop Production Systems. In: Thangadurai, D., Sangeetha, J., Prasad, R. (eds) Nanotechnology for Food, Agriculture, and Environment. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-31938-0_7

Download citation

Publish with us

Policies and ethics