Skip to main content

Abstract

This chapter analyses real world human activity recognition problem. It uses discrete wavelet transform and multiclass support vector machine (SVM) classifier for recognition. The experiments are done using Weizmann and KTH action datasets. Objective evaluation is done for nine activities walk, run, bend, gallop sideways, jumping jack, one handwave, two handwave, jump in place and skip from Weizmann dataset. Six activities that are considered from KTH dataset are handwaving, running, walking, boxing, jogging and handclapping. Results are shown qualitatively as well as quantitatively on two publicly available dataset Weizmann and KTH. Quantitative evaluations demonstrate better performance of the proposed method in comparison to the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borges PVK, Conci N, Cavallaro A (2013) Video-based human behavior understanding: a survey. IEEE Trans Circuits Syst Video Technol 23(11):1993–2008

    Article  Google Scholar 

  2. Gonzàlez J, Moeslund TB, Wang L (2012) Semantic understanding of human behaviors in image sequences: from video-surveillance to video-hermeneutics. Comput Vis Image Underst 116(3):305–306

    Article  Google Scholar 

  3. Wiliem A, Madasu V, Boles W, Yarlagadda P (2012) A suspicious behaviour detection using a context space model for smart surveillance systems. Comput Vis Image Underst 116(2):194–209

    Article  Google Scholar 

  4. Nigam S, Singh R, Misra AK (2018) A review of computational approaches for human behavior detection. Arch Comput Methods Eng:1–33

    Google Scholar 

  5. Tran C, Doshi A, Trivedi MM (2012) Modeling and prediction of driver behavior by foot gesture analysis. Comput Vis Image Underst 116(3):435–445

    Article  Google Scholar 

  6. Vishwakarma S, Agrawal A (2013) A survey on activity recognition and behavior understanding in video surveillance. Vis Comput 29(10):983–1009

    Article  Google Scholar 

  7. Nigam S, Singh R, Misra AK (2019) Towards intelligent human behavior detection for video surveillance. In: Censorship, surveillance, and privacy: concepts, methodologies, tools, and applications. IGI Global, Hershey, pp 884–917

    Chapter  Google Scholar 

  8. Ziaeefard M, Bergevin R (2015) Semantic human activity recognition: a literature review. Pattern Recogn 48(8):2329–2345

    Article  Google Scholar 

  9. Aggarwal JK, Xia L (2014) Human activity recognition from 3d data: a review. Pattern Recogn Lett 48:70–80

    Article  Google Scholar 

  10. Yanan L, Kun JL, Yu YW (2014) Capturing human motion based on modified hidden markov model in multi-view image sequences. J Multimed 9(1):92–99

    Google Scholar 

  11. Binh NT, Nigam S, Khare A (2013) Towards classification based human activity recognition in video sequences. In: International conference on context-aware systems and applications. Springer, Cham, pp 209–218

    Google Scholar 

  12. Gorelick L, Blank M, Shechtman E, Irani M, Basri R (2007) Actions as space-time shapes. IEEE Trans Pattern Anal Mach Intell 29(12):2247–2253

    Article  Google Scholar 

  13. Laptev I, Caputo B (2004) Recognizing human actions: a local SVM approach. In: null. IEEE, pp 32–36

    Google Scholar 

  14. Bibi S, Anjum N, Sher M (2018) Automated multi-feature human interaction recognition in complex environment. Comput Ind 99:282–293

    Article  Google Scholar 

  15. Skibbe H, Reisert M, Schmidt T, Brox T, Ronneberger O, Burkhardt H (2012) Fast rotation invariant 3D feature computation utilizing efficient local neighborhood operators. IEEE Trans Pattern Anal Machine Intell 34(8):1563–1575

    Article  Google Scholar 

  16. Nigam S, Khare M, Srivastava RK, Khare A (2013) An effective local feature descriptor for object detection in real scenes. In: 2013 IEEE conference on information & communication technologies. IEEE, pp 244–248

    Google Scholar 

  17. Yussiff AL, Yong SP, Baharudin BB (2014) Detecting people using histogram of oriented gradients: a step towards abnormal human activity detection. In: Advances in computer science and its applications. Springer, Berlin/Heidelberg, pp 1145–1150

    Chapter  Google Scholar 

  18. Kong Y, Fu Y (2016) Close human interaction recognition using patch-aware models. IEEE Trans Image Process 25(1):167–178

    Article  MathSciNet  Google Scholar 

  19. Cho NG, Park SH, Park JS, Park U, Lee SW (2017) Compositional interaction descriptor for human interaction recognition. Neurocomputing 267:169–181

    Article  Google Scholar 

  20. Liu C, Yuen J, Torralba A (2011) Sift flow: dense correspondence across scenes and its applications. IEEE Trans Pattern Anal Mach Intell 33(5):978–994

    Article  Google Scholar 

  21. Scovanner P, Ali S, Shah M (2007) A 3-dimensional sift descriptor and its application to action recognition. In: Proceedings of the 15th ACM international conference on multimedia. ACM, pp 357–360

    Google Scholar 

  22. Slimani KNEH, Benezeth Y, Souami F (2014) Human interaction recognition based on the co-occurence of visual words. In: IEEE CVPR CMSI workshop, pp 455–460

    Google Scholar 

  23. Nigam S, Khare A (2016) Integration of moment invariants and uniform local binary patterns for human activity recognition in video sequences. Multimed Tools Appl 75(24):17303–17332

    Article  Google Scholar 

  24. Simonyan K, Zisserman A (2014) Two-stream convolutional networks for action recognition in videos. In: Advances in neural information processing systems, pp 568–576

    Google Scholar 

  25. Tran D, Bourdev L, Fergus R, Torresani L, Paluri M (2015) Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE international conference on computer vision, pp 4489–4497

    Google Scholar 

  26. Liu J, Shahroudy A, Xu D, Wang G (2016) Spatio-temporal LSTM with trust gates for 3D human action recognition. In: European conference on computer vision. Springer, Cham, pp 816–833

    Google Scholar 

  27. Wang L, Qiao Y, Tang X (2015) Action recognition with trajectory-pooled deep-convolutional descriptors. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4305–4314

    Google Scholar 

  28. Alp Güler R, Neverova N, Kokkinos I (2018) Densepose: dense human pose estimation in the wild. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7297–7306

    Google Scholar 

  29. Cao Z, Simon T, Wei SE, Sheikh Y (2017) Realtime multi-person 2d pose estimation using part affinity fields. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7291–7299

    Google Scholar 

  30. Yan S, Xiong Y, Lin D (2018) Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Thirty-second AAAI conference on artificial intelligence

    Google Scholar 

  31. Piccardi M (2004) Background subtraction techniques: a review. In: 2004 IEEE international conference on systems, man and cybernetics (IEEE Cat. No. 04CH37583), vol 4. IEEE, pp 3099–3104

    Google Scholar 

  32. Uddin MZ, Lee JJ, Kim TS (2010) Independent shape component-based human activity recognition via Hidden Markov Model. Appl Intell 33(2):193–206

    Article  Google Scholar 

  33. Roshtkhari MJ, Levine MD (2012) A multi-scale hierarchical codebook method for human action recognition in videos using a single example. In: 2012 ninth conference on computer and robot vision. IEEE, pp 182–189

    Google Scholar 

  34. Ballan L, Bertini M, Del Bimbo A, Seidenari L, Serra G (2009) Human action recognition and localization using spatio-temporal descriptors and tracking. In: Proceedings of the workshop on pattern recognition and artificial intelligence for human behaviour analysis, Reggio Emilia, Italy, pp 1–8

    Google Scholar 

  35. Goudelis G, Karpouzis K, Kollias S (2013) Exploring trace transform for robust human action recognition. Pattern Recogn 46(12):3238–3248

    Article  Google Scholar 

  36. Roshtkhari MJ, Levine MD (2013) Human activity recognition in videos using a single example. Image Vis Comput 31(11):864–876

    Article  Google Scholar 

  37. Gupta JP, Singh N, Dixit P, Semwal VB, Dubey SR (2013) Human activity recognition using gait pattern. Int J Comput Vis Image Process 3(3):31–53

    Article  Google Scholar 

  38. Arunnehru J, Geetha MK (2013) Motion intensity code for action recognition in video using PCA and SVM. In: Mining intelligence and knowledge exploration. Springer, Cham, pp 70–81

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R., Nigam, S., Singh, A.K., Elhoseny, M. (2020). Wavelets for Activity Recognition. In: Intelligent Wavelet Based Techniques for Advanced Multimedia Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-31873-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31873-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31872-7

  • Online ISBN: 978-3-030-31873-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics