Skip to main content
  • 292 Accesses

Abstract

This chapter proposes a new method of camouflaged person identification that combines discrete wavelet coefficients with support vector machine (SVM) classifier. Multiresolution property of wavelet transform provides invariant person identification against camouflaged scenes and do not get affected by similar foreground and background objects. Flexibility of wavelet and SVM makes the proposed method robust while providing better efficiency. For evaluation of the proposed method, we have experimented it over CAMO_UOW dataset. From objective evaluation it is clear that proposed approach outperforms existing camouflaged person identification approaches. The proposed methodology is simple and does not depend on a specific special resolution. It is suitable for detecting camouflaged persons in the images or videos where foreground and background are almost similar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharma L, Garg PK (2019) From visual surveillance to internet of things: technology and applications. Taylor and Francis, New York

    Book  Google Scholar 

  2. Kavalionak H, Gennaro C, Amato G, Vairo C, Perciante C, Meghini C, Falchi F (2019) Distributed video surveillance using smart cameras. J Grid Comput 17(1):59–77

    Article  Google Scholar 

  3. Anderson NW, Turner CD, Le DM, Vollmar U, Davis TJ (2019) U.S. Patent Application No. 10/183,667

    Google Scholar 

  4. Zhao Y, Belkasim S (2012) Multiresolution Fourier descriptors for multiresolution shape analysis. IEEE Signal Process Lett 19(10):692–695

    Article  Google Scholar 

  5. Flusser J, Suk T, Zitova B (2009) Moments and moment invariants in pattern recognition. Wiley, Chichester

    Book  Google Scholar 

  6. Hu M (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theory 8:179–187

    MATH  Google Scholar 

  7. Guo L, Zhao J (2008) Specific human detection from surveillance video based on color invariant moments. Int Symp Intell Inf Technol Appl 2:331–335

    Google Scholar 

  8. Nigam S, Deb K, Khare A (2013) Moment invariants based object recognition for different pose and appearances in real scenes. In: 2013 international conference on informatics, electronics and vision (ICIEV). IEEE, pp 1–5

    Google Scholar 

  9. Suk T, Flusser J (2003) Combined blur and affine moment invariants and their use in pattern recognition. Pattern Recogn 36(12):2895–2907

    Article  Google Scholar 

  10. Chen BJ, Shu HZ, Zhang H, Chen G, Toumoulin C, Dillenseger JL, Luo LM (2012) Quaternion Zernike moments and their invariants for color image analysis and object recognition. Signal Process 92:308–318

    Article  Google Scholar 

  11. Hosny KM (2010) Refined translation and scale Legendre moment invariants. Pattern Recogn Lett 31:533–538

    Article  Google Scholar 

  12. Dalal N, Triggs B (2005) Histogram of oriented gradients for human detection. IEEE Int Conf Comput Vis Pattern Recogn:886–893

    Google Scholar 

  13. Soler JD, Beuther H, Rugel M, Wang Y, Clark PC, Glover SCO et al (2019) Histogram of oriented gradients: a technique for the study of molecular cloud formation. Astron Astrophys 622:A166

    Article  Google Scholar 

  14. Pang Y, Yuan Y, Li X, Pan J (2011) Efficient HOG human detection. Signal Process 91:773–781

    Article  Google Scholar 

  15. Liu H, Xu T, Wang X, Qian Y (2013) Related HOG features for human detection using cascaded Adaboost and SVM classifiers. Int Multimed Model Conf (MMM) LNCS 7733(2):345–355

    Google Scholar 

  16. Chandrasekhar V, Takacs G, Chen D, Tsai S, Grzeszczuk R, Girod B (2009) CHoG: compressed histogram of gradients A low bit-rate feature descriptor. IEEE Int Conf Comput Vis Pattern Recogn:2504–2511

    Google Scholar 

  17. Bosch A, Zisserman A, Munoz X (2007) Representing shape with a spatial pyramid kernel. ACM Int Conf Image Video Retr:401–408

    Google Scholar 

  18. Skibbe H, Reisert M, Schmidt T, Brox T (2012) Fast rotation invariant 3D feature computation utilizing efficient local neighborhood operators. IEEE Trans Pattern Anal Mach Intell 34(8):1563–1575

    Article  Google Scholar 

  19. Skibbe H, Reisert M, Burkhardt H (2011) SHOG – spherical HOG descriptors for rotation invariant 3D object detection. Int Conf Pattern Recogn:142–151

    Google Scholar 

  20. Nigam S, Khare M, Srivastava RK, Khare A (2013) An effective local feature descriptor for object detection in real scenes. In: 2013 IEEE conference on information & communication technologies. IEEE, pp 244–248

    Google Scholar 

  21. Nguyen DT, Ogunbona PO, Li W (2013) A novel shape-based non-redundant local binary pattern descriptor for object detection. Pattern Recogn 46:1485–1500

    Article  Google Scholar 

  22. Ko BC, Kim DY, Jung JH, Nam JY (2013) Three-level cascade of random forests for rapid human detection. Opt Eng 52(2):027204

    Article  Google Scholar 

  23. Zhang JG, Huang KQ, Yu YN, Tan TN (2011) Boosted local structured HOG-LBP for object localization. IEEE Int Conf Comput Vis Pattern Recogn:1393–1400

    Google Scholar 

  24. Shen J, Yang W, Sun C (2012) Real-time human detection based on gentle MILBoost with variable granularity HOG-CSLBP. Neural Comput Applic. https://doi.org/10.1007/s00521-012-1153-5. ISNN 2012

    Article  Google Scholar 

  25. Zhou S, Liu Q, Guo J, Jiang Y (2012) ROI-HOG and LBP based human detection via shape part-templates matching. Int Conf Neural Inf Process LNCS 7667(5):109–115

    Google Scholar 

  26. Malisiewicz T, Gupta A, Efros AA (2011) Ensemble of exemplar-svms for object detection and beyond. IEEE Int Conf Comput Vis:89–96

    Google Scholar 

  27. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2(2):121–167

    Article  Google Scholar 

  28. Li S, Florencio D, Li W, Zhao Y, Cook C (2018) A fusion framework for camouflaged moving foreground detection in the wavelet domain. IEEE Trans Image Process 27(8):3918–3930

    Article  MathSciNet  Google Scholar 

  29. Zivkovic Z, Van Der Heijden F (2006) Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn Lett 27(7):773–780

    Article  Google Scholar 

  30. El Baf F, Bouwmans T, Vachon B (2008) Fuzzy integral for moving object detection. In: 2008 IEEE international conference on fuzzy systems (IEEE world congress on computational intelligence). IEEE, pp 1729–1736

    Google Scholar 

  31. Maddalena L, Petrosino A (2008) A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans Image Process 17(7):1168–1177

    Article  MathSciNet  Google Scholar 

  32. Hofmann M, Tiefenbacher P, Rigoll G (2012) Background segmentation with feedback: the pixel-based adaptive segmenter. In: 2012 IEEE computer society conference on computer vision and pattern recognition workshops. IEEE, pp 38–43

    Google Scholar 

  33. St-Charles PL, Bilodeau GA, Bergevin R (2014) Subsense: a universal change detection method with local adaptive sensitivity. IEEE Trans Image Process 24(1):359–373

    Article  MathSciNet  Google Scholar 

  34. Yao J, Odobez JM (2007) Multi-layer background subtraction based on color and texture. In: 2007 IEEE conference on computer vision and pattern recognition. IEEE, pp 1–8

    Google Scholar 

  35. Zhou X, Yang C, Yu W (2012) Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(3):597–610

    Article  Google Scholar 

  36. Shakeri M, Zhang H (2016) COROLA: a sequential solution to moving object detection using low-rank approximation. Comput Vis Image Underst 146:27–39

    Article  Google Scholar 

  37. Nigam S, Khare A (2015) Multiresolution approach for multiple human detection using moments and local binary patterns. Multimed Tools Appl 74(17):7037–7062

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R., Nigam, S., Singh, A.K., Elhoseny, M. (2020). Camouflaged Person Identification. In: Intelligent Wavelet Based Techniques for Advanced Multimedia Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-31873-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31873-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31872-7

  • Online ISBN: 978-3-030-31873-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics