Skip to main content

Abstract

Object tracking is core probelm in computer vision for effective video surveillance. Wavelet based tracking techniques have emerged as a powerful tool. We have exploited newly emerged curvelet transform coefficients for video object tracking. Unlike existing methods, wavelet based tracking computes only wavelet coefficients and do not get affected by variations in object’s shape, size or color. However, we assumed that size of object does not change significantly in consecutive frames. A small change is permissible only. If we take long frame range, we see that object’s shape and size changes significantly. Experimentation demonstrates that curvelet transform is capable of tracking of single object as well as multiple objects. It is found superior when compared qualitatively and quantitatively with existing tracking methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li X, Hu W, Shen C, Zhang Z, Dick A, Hengel AVD (2013) A survey of appearance models in visual object tracking. ACM Trans Intell Syst Technol 4(4):58

    Article  Google Scholar 

  2. Wu Y, Lim J, Yang MH (2015) Object tracking benchmark. IEEE Trans Pattern Anal Mach Intell 37(9):1834–1848

    Article  Google Scholar 

  3. Kristan M, Matas J, Leonardis A, Felsberg M, Cehovin L, Fernandez G et al (2015) The visual object tracking vot2015 challenge results. In: Proceedings of the IEEE international conference on computer vision workshops, pp 1–23

    Google Scholar 

  4. Viani F, Lizzi L, Rocca P, Benedetti M, Donelli M, Massa A (2008) Object tracking through RSSI measurements in wireless sensor networks, vol 44. University of Trento, p 653

    Google Scholar 

  5. Samarah S, Al-Hajri M, Boukerche A (2011) A predictive energy-efficient technique to support object-tracking sensor networks. IEEE Trans Veh Technol 60(2):656–663

    Article  Google Scholar 

  6. Cho H, Seo YW, Kumar BV, Rajkumar RR (2014) A multi-sensor fusion system for moving object detection and tracking in urban driving environments. In: Robotics and automation (ICRA), 2014 IEEE international conference on. IEEE, pp 1836–1843

    Google Scholar 

  7. Raheja JL, Chaudhary A, Singal K (2011) Tracking of fingertips and centers of palm using kinect. In: Computational intelligence, modelling and simulation (CIMSiM), 2011 third international conference on. IEEE, pp 248–252

    Google Scholar 

  8. Kendrick L, Bzostek A, Doerr VJ (2015) System and method for tracking positions of uniform marker geometries. U.S. Patent No. 9,220,573. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  9. Tang X, Sharp GC, Jiang SB (2007) Fluoroscopic tracking of multiple implanted fiducial markers using multiple object tracking. Phys Med Biol 52(14):4081–4098

    Article  Google Scholar 

  10. Maharbiz MM, Morichau-Beauchant T (2013) Intelligent board game system with visual marker based object tracking and identification. U.S. Patent Application 13/294,071, filed May 16, 2013

    Google Scholar 

  11. Guan M, Wen C, Shan M, Ng CL, Zou Y (2019) Real-time event-triggered object tracking in the presence of model drift and occlusion. IEEE Trans Ind Electron 66(3):2054–2065

    Article  Google Scholar 

  12. Chen K, Tao W (2019) Learning linear regression via single-convolutional layer for visual object tracking. IEEE Trans Multimed 21(1):86–97

    Article  MathSciNet  Google Scholar 

  13. Ning J, Zhang L, Zhang D, Wu C (2012) Robust mean-shift tracking with corrected background-weighted histogram. IET Comput Vis 6(1):62–69

    Article  MathSciNet  Google Scholar 

  14. Tian W, Lauer M, Chen L (2019) Online multi-object tracking using joint domain information in traffic scenarios. IEEE Trans Intell Transp Syst:1–11

    Google Scholar 

  15. Kim C, Song D, Kim CS, Park SK (2019) Object tracking under large motion: combining coarse-to-fine search with superpixels. Inf Sci 480:194–210

    Article  Google Scholar 

  16. Ning J, Zhang L, Zhang D, Wu C (2009) Robust object tracking using joint color-texture histogram. Int J Pattern Recogn Artif Intell 23(7):1245–1263

    Article  Google Scholar 

  17. Chen Y, Wang J, Xia R, Zhang Q, Cao Z, Yang K (2019) The visual object tracking algorithm research based on adaptive combination kernel. J Ambient Intell Humaniz Comput:1–13

    Google Scholar 

  18. Porikli F, Tuzelq O, Meer P (2006) Covariance tracking using model update based on lie algebra. Proc IEEE Conf Comput Vision Pattern Recog USA:728–735

    Google Scholar 

  19. Li M, Peng Z, Chen Y, Wang X, Peng L, Wang Z et al (2019) A novel reverse sparse model utilizing the spatio-temporal relationship of target templates for object tracking. Neurocomputing 323:319–334

    Article  Google Scholar 

  20. Nigam S, Khare A (2010) Curvelet transform based object tracking. In: IEEE international conference on computer and communication technology, pp 230–235

    Google Scholar 

  21. Nigam S, Khare A (2012) Curvelet transform-based technique for tracking of moving objects. IET Comput Vis 6(3):231–251

    Article  MathSciNet  Google Scholar 

  22. Heinrich S, Springstübe P, Knöppler T, Kerzel M, Wermter S (2019) Continuous convolutional object tracking in developmental robot scenarios. Neurocomputing 342:137–144

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R., Nigam, S., Singh, A.K., Elhoseny, M. (2020). Object Tracking. In: Intelligent Wavelet Based Techniques for Advanced Multimedia Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-31873-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31873-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31872-7

  • Online ISBN: 978-3-030-31873-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics