Skip to main content

Wavelets and Intelligent Multimedia Applications: An Introduction

  • Chapter
  • First Online:
Intelligent Wavelet Based Techniques for Advanced Multimedia Applications

Abstract

With the great development of multimedia technology and applications, it becomes important to provide a thorough understanding of the existing literature. This aim can be achieved by analysis of state of the art methodologies of multimedia applications. Wavelet transforms have been found very useful in a large variety of multimedia applications. It ranges from simple imaging to complex computer vision applications. One of the major advantages of the wavelet transform is that it meets the need of majority of applications and can be combined with machine and deep learning for performance enhancement. These applications include image fusion, image and video watermarking, object tracking, activity recognition, emotion recognition etc. This chapter aims to provide a brief introduction to the development of multimedia applications in the wavelet domain. Some major multimedia applications of the wavelet transforms have been discussed with their relevance and real life applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marr D (1976) Early processing of visual information. Philos Trans R Soc Lond B Biol Sci 275(942):483–519

    Article  Google Scholar 

  2. Posner MI, Nissen MJ, Klein RM (1976) Visual dominance: An information-processing account of its origins and significance. Psychol Rev 83(2):157–171

    Article  Google Scholar 

  3. Jain AK (1989) Fundamentals of digital image processing. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  4. Sonka M, Hlavac V, Boyle R (2014) Image processing, analysis, and machine vision. Cengage Learning, Stamford

    Google Scholar 

  5. Forsyth DA, Ponce J (2002) Computer vision: a modern approach. Prentice Hall Professional Technical Reference, Upper Saddle River

    Google Scholar 

  6. Schalkoff RJ (1989) Digital image processing and computer vision, vol 286. Wiley, New York

    Google Scholar 

  7. Jain AK, Ross A, Prabhakar S (2004) An introduction to biometric recognition. IEEE Trans Circuits Syst Video Technol 14(1):4–20

    Article  Google Scholar 

  8. Lyons M, Akamatsu S, Kamachi M, Gyoba J (1998, April) Coding facial expressions with gabor wavelets. In: Proceedings third IEEE international conference on automatic face and gesture recognition. IEEE, Seoul, pp 200–205

    Chapter  Google Scholar 

  9. Prokop RJ, Reeves AP (1992) A survey of moment-based techniques for unoccluded object representation and recognition. CVGIP: Graph Model Image Process 54(5):438–460

    Google Scholar 

  10. Yilmaz A, Javed O, Shah M (2006) Object tracking: A survey. ACM Comput Surv (CSUR) 38(4):13–es

    Article  Google Scholar 

  11. Pantic M, Pentland A, Nijholt A, Huang TS (2007) Human computing and machine understanding of human behavior: A survey. In: Artifical intelligence for human computing. Springer, Berlin, Heidelberg, pp 47–71

    Chapter  Google Scholar 

  12. Hu W, Tan T, Wang L, Maybank S (2004) A survey on visual surveillance of object motion and behaviors. IEEE Trans Syst Man Cybern Part C Appl Rev 34(3):334–352

    Article  Google Scholar 

  13. Li S, Kang X, Fang L, Hu J, Yin H (2017) Pixel-level image fusion: A survey of the state of the art. Inf Fusion 33:100–112

    Article  Google Scholar 

  14. James AP, Dasarathy BV (2014) Medical image fusion: A survey of the state of the art. Inf Fusion 19:4–19

    Article  Google Scholar 

  15. Jiang D, Zhuang D, Huang Y, Fu J (2011) Survey of multispectral image fusion techniques in remote sensing applications. In: Image fusion and its applications, pp 1–23.

    Google Scholar 

  16. Jain AK, Dorai C (1997) Practicing vision: Integration, evaluation and applications. Pattern Recogn 30(2):183–196

    Article  Google Scholar 

  17. Vernon D (1991) Machine vision-automated visual inspection and robot vision. NASA STI/Recon Technical Report A, 92.

    Google Scholar 

  18. Kingsbury N, Magarey J (1998) Wavelet transforms in image processing. In: Signal analysis and prediction. Birkhäuser, Boston, pp 27–46

    Chapter  Google Scholar 

  19. Rioul O, Vetterli M (1991) Wavelets and signal processing. IEEE Signal Process Mag 8(ARTICLE):14–38

    Article  Google Scholar 

  20. Mallat S (1999) A wavelet tour of signal processing. Elsevier, San Diego

    MATH  Google Scholar 

  21. Mallat SG (1989) A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693

    Article  MATH  Google Scholar 

  22. Nigam S, Singh R, Misra AK (2018) Efficient facial expression recognition using histogram of oriented gradients in wavelet domain. Multimed Tools Appl 77(21):28725–28747

    Article  Google Scholar 

  23. Singh R, Khare A (2014) Fusion of multimodal medical images using Daubechies complex wavelet transform–a multiresolution approach. Inf Fusion 19:49–60

    Article  Google Scholar 

  24. Singh S, Rathore VS, Singh R (2017) Hybrid NSCT domain multiple watermarking for medical images. Multimed Tools Appl 76(3):3557–3575

    Article  Google Scholar 

  25. Zhang L, Zhou W, Jiao L (2004) Wavelet support vector machine. IEEE Trans Syst Man Cybern B Cybern 34(1):34–39

    Article  Google Scholar 

  26. Chaplot S, Patnaik LM, Jagannathan NR (2006) Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed Signal Process Control 1(1):86–92

    Article  Google Scholar 

  27. Usman K, Rajpoot K (2017) Brain tumor classification from multi-modality MRI using wavelets and machine learning. Pattern Anal Applic 20(3):871–881

    Article  MathSciNet  Google Scholar 

  28. Liu P, Zhang H, Zhang K, Lin L, Zuo W (2018) Multi-level wavelet-CNN for image restoration. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops. IEEE, Salt Lake City, pp 773–782

    Google Scholar 

  29. Kang E, Min J, Ye JC (2017) A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med Phys 44(10):e360–e375

    Article  Google Scholar 

  30. Kanarachos S, Christopoulos SRG, Chroneos A, Fitzpatrick ME (2017) Detecting anomalies in time series data via a deep learning algorithm combining wavelets, neural networks and Hilbert transform. Expert Syst Appl 85:292–304

    Article  Google Scholar 

  31. Hassairi S, Ejbali R, Zaied M (2015, November) Supervised image classification using deep convolutional wavelets network. In: 2015 IEEE 27th international conference on tools with artificial intelligence (ICTAI). IEEE, Vietri sul Mare, pp 265–271

    Chapter  Google Scholar 

  32. Ye JC, Han Y, Cha E (2018) Deep convolutional framelets: A general deep learning framework for inverse problems. SIAM J Imaging Sci 11(2):991–1048

    Article  MathSciNet  MATH  Google Scholar 

  33. Diker A, Avci D, Avci E, Gedikpinar M (2019) A new technique for ECG signal classification genetic algorithm wavelet kernel extreme learning machine. Optik 180:46–55

    Article  Google Scholar 

  34. Subasi A, Kevric J, Canbaz MA (2019) Epileptic seizure detection using hybrid machine learning methods. Neural Comput & Applic 31(1):317–325

    Article  Google Scholar 

  35. Ghasemzadeh A, Azad SS, Esmaeili E (2019) Breast cancer detection based on Gabor-wavelet transform and machine learning methods. Int J Mach Learn Cybern 10(7):1603–1612

    Article  Google Scholar 

  36. Khagi B, Kwon GR, Lama R (2019) Comparative analysis of Alzheimer’s disease classification by CDR level using CNN, feature selection, and machine-learning techniques. Int J Imaging Syst Technol 29(3):297–310

    Article  Google Scholar 

  37. Kiaee N, Hashemizadeh E, Zarrinpanjeh N (2019) Using GLCM features in Haar wavelet transformed space for moving object classification. IET Intell Transp Syst 13:1148–1153

    Article  Google Scholar 

  38. Moghaddam HA, Zare A (2019) Spatiotemporal wavelet correlogram for human action recognition. Int J Multimed Inf Retr 8:1–14

    Article  Google Scholar 

  39. Bolouri K, Azmoodeh A, Dehghantanha A, Firouzmand M (2019) Internet of things camera identification algorithm based on sensor pattern noise using color filter array and wavelet transform. In: Handbook of big data and IoT security. Springer, Cham, pp 211–223

    Chapter  Google Scholar 

  40. Chen YT, Lai WN, Sun EW (2019) Jump detection and noise separation by a singular wavelet method for predictive analytics of high-frequency data. Comput Econ 54:1–36

    Article  Google Scholar 

  41. Aldroubi A, Unser M (1996) Wavelets in medicine and biology. CRC Press, Bosa Roca

    MATH  Google Scholar 

  42. Dhawas NA, Patil D, Sambhaji A (2019) Invisible video watermarking for data integrity and security based on discrete wavelet transform–a review. Invisible video watermarking for data integrity and security based on discrete wavelet transform–a review (May 18, 2019)

    Google Scholar 

  43. Tsakanikas V, Dagiuklas T (2018) Video surveillance systems-current status and future trends. Comput Electr Eng 70:736–753

    Article  Google Scholar 

  44. Burrus CS, Gopinath RA, Guo H, Odegard JE, Selesnick IW (1998) Introduction to wavelets and wavelet transforms: A primer, vol 1. Prentice hall, New Jersey

    Google Scholar 

  45. Strang G, Nguyen T (1996) Wavelets and filter banks. SIAM, Wellesley

    MATH  Google Scholar 

  46. Mallat SG (1988) Multiresolution representations and wavelets

    Google Scholar 

  47. Pajares G, De La Cruz JM (2004) A wavelet-based image fusion tutorial. Pattern Recogn 37(9):1855–1872

    Article  Google Scholar 

  48. Daubechies I (1990) The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inf Theory 36(5):961–1005

    Article  MathSciNet  MATH  Google Scholar 

  49. Simoncelli EP, Freeman WT, Adelson EH, Heeger DJ (1991) Shiftable multiscale transforms. IEEE Trans Inf Theory 38(2):587–607

    Article  MathSciNet  Google Scholar 

  50. Selesnick I, Baraniuk R, Kingsbury N (2005) The dual-tree complex wavelet transform. IEEE Signal Process Mag 22:123–151

    Article  Google Scholar 

  51. Pajares G, De La Cruz JM (2004) A wavelet-based image fusion tutorial. Pattern Recogn 37(9):1855–1872

    Article  Google Scholar 

  52. Gangadhar Y, Akula VG, Reddy PC (2018) An evolutionary programming approach for securing medical images using watermarking scheme in invariant discrete wavelet transformation. Biomed Signal Process Control 43:31–40

    Article  Google Scholar 

  53. Rui T, Zhang Q, Zhou Y, Xing J (2013) Object tracking using particle filter in the wavelet subspace. Neurocomputing 119:125–130

    Article  Google Scholar 

  54. Guo Q, Cao X, Zou Q (2018) Enhanced wavelet convolutional neural networks for visual tracking. J Electron Imaging 27(5):053046

    Article  Google Scholar 

  55. Chan AD, Hamdy MM, Badre A, Badee V (2008) Wavelet distance measure for person identification using electrocardiograms. IEEE Trans Instrum Meas 57(2):248–253

    Article  Google Scholar 

  56. Siddiqi M, Ali R, Rana M, Hong EK, Kim E, Lee S (2014) Video-based human activity recognition using multilevel wavelet decomposition and stepwise linear discriminant analysis. Sensors 14(4):6370–6392

    Article  Google Scholar 

  57. Wang J, Xu Z (2016) Spatio-temporal texture modelling for real-time crowd anomaly detection. Comput Vis Image Underst 144:177–187

    Article  Google Scholar 

  58. Goldman AI, Sripada CS (2005) Simulationist models of face-based emotion recognition. Cognition 94(3):193–213

    Article  Google Scholar 

  59. Busso C, Deng Z, Yildirim S, Bulut M, Lee CM, Kazemzadeh A et al (2004) Analysis of emotion recognition using facial expressions, speech and multimodal information. In: Proceedings of the 6th international conference on multimodal interfaces. ACM, State College, pp 205–211

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R., Nigam, S., Singh, A.K., Elhoseny, M. (2020). Wavelets and Intelligent Multimedia Applications: An Introduction. In: Intelligent Wavelet Based Techniques for Advanced Multimedia Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-31873-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31873-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31872-7

  • Online ISBN: 978-3-030-31873-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics