Skip to main content

Navier–Stokes Equations

  • Chapter
  • First Online:
Navier-Stokes Turbulence
  • 1228 Accesses

Abstract

The dynamics of the Newtonian fluids considered here are determined by the laws of classical mechanics, a selection of references for the derivation of the fundamental pdes from these laws are Lamb [1], Landau and Lifshitz [2], Serrin [3], Majda and Bertozzi [4], Wu et al. [5]. The description and analysis of fully developed turbulent flows is the central theme. Turbulence in superfluids, i.e. liquid helium below the \(\lambda \)-temperature \(T=2.17\) K at atmospheric pressure, exhibits properties similar to turbulence in classical Newtonian fluids for vanishing viscosity, but are also subject to quantum-mechanical phenomena that do not have counterparts in classical fluid mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lamb, H.: Hydrodynamics. 3rd ed. Cambridge University Press (1906)

    Google Scholar 

  2. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Pergamon Press, Oxford, U.K. (1956)

    Google Scholar 

  3. Serrin, J.: The initial value problem for the Navier-Stokes equations. In: Langer, R. (ed.) Nonlinear Problems, Symp. Proc., University of Wisconsin Press, p. 69 (1963)

    Google Scholar 

  4. Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge, U.K. (2002)

    MATH  Google Scholar 

  5. Wu, J.-Z., Ma, H.-Y., Zhou, M.-D.: Vorticity and Vortex Dynamics. Springer, Berlin (2006)

    Book  Google Scholar 

  6. Guénault, A.M.: Basic Superfluids. Taylor & Francis, London, U.K. (2003)

    Book  MATH  Google Scholar 

  7. Vinen, W.F.: Superfluid turbulence: experiments, physical principles, and outstanding problems. In: Smits, A.J. (ed.) IUTAM Symposium on Reynolds Number Scaling in Turbulent Flow, pp. 101–108. Kluwer Academic Publishers, Dordrecht (2004)

    Chapter  Google Scholar 

  8. Donnelly, R.J.: Background on Superfluid turbulence. In: Smits, A.J. (ed.) IUTAM Symposium on Reynolds Number Scaling in Turbulent Flow, pp. 92–100. Kluwer Academic Publishers, Dordrecht (2004)

    Chapter  Google Scholar 

  9. Skrbek, L.: Quantum turbulence. J. Phys. Conf. Ser. 318, 012004 (2011)

    Article  Google Scholar 

  10. Kollmann, W.: Fluid Mechanics in Spatial and Material Description. University Readers, San Diego (2011)

    Google Scholar 

  11. Bennett, A.: Lagrangian Fluid Dynamics. Cambridge University Press, Cambridge, U.K. (2006)

    Book  MATH  Google Scholar 

  12. Cantwell, B.J.: Introduction to Symmetry Analysis. Cambridge University Press, U.K. (2002)

    MATH  Google Scholar 

  13. Gallavotti, G.: Foundations of Fluid Dynamics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  14. Tsinober, A.: An Informal Conceptual Introduction to Turbulence, 2nd edn. Springer, Dordrecht (2009)

    Book  MATH  Google Scholar 

  15. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. R.T. Edwards, Philadelphia, PA (2001)

    Google Scholar 

  16. Frisch, U.: Turbulence: The Legacy of A.N. Kolmogorov. Cambridge University Press (1995)

    Google Scholar 

  17. Oberlack, M.: Symmetrie, Invarianz und Selbstähnlichkeit in der Turbulenz. Shaker, Aachen, Germany (2000)

    Google Scholar 

  18. Oberlack, M., Waclawczyk, M., Rosteck, A., Avsarkisov, V.: Symmetries and their importance for statistical turbulence theory. Bull. JSME 2, 1–72 (2015)

    Google Scholar 

  19. Duistermaat, J.J., Kolk, J.A.C.: Lie Groups. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  20. Von Wahl, W.: The Equations of Navier-Stokes and Abstract Parabolic Equations. Vieweg, Braunschweig (1985)

    Book  MATH  Google Scholar 

  21. Constantin, P., Foias, C.: Navier-Stokes Equations. University of Chicago Press (1988)

    Google Scholar 

  22. Kreiss, H.O., Lorentz, J.: Initial-Boundary Value Problems and the Navier-Stokes Equations. Academic Press (1989)

    Google Scholar 

  23. Sohr, H.S.: The Navier-Stokes Equations. Springer, Basel (2001)

    Book  MATH  Google Scholar 

  24. Constantin, P.: Euler Equations, Navier-Stokes equations and turbulence. In: Mathematical Foundation of Turbulent Viscous Flows. Lecture Notes in Mathematics, vol. 1871, pp. 1–43 (2006)

    Google Scholar 

  25. www.claymath.org/millenium/

  26. Eyink, G.L.: Energy dissipation without viscosity in ideal hydrodynamics: fourier analysis and local energy transfer. Physica D 78, 222–240 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Duchon, J., Robert, R.: Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations. Nonlinearity 13, 249–255 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Spalart, P.R.: Numerical Simulation of Boundary Layers. Part 1. Weak Formulation and Numerical Method, NASA TM-88222 (1986)

    Google Scholar 

  29. Seregin, G.: Lecture Notes on Regularity Theory for the Navier-Stokes Equations. World Scientific, New Jersey (2015)

    MATH  Google Scholar 

  30. Hopf, E.: Uber die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachrichten 4, 213–231 (1950)

    Article  MATH  Google Scholar 

  31. Kiselev, A.A., Ladyshenskaya, O.A.: On existence and uniqueness of the solution of the nonstationary problem for a viscous incompressible fluid. Izvestiya Akad. Nauk SSSR 21, 655 (1957)

    MathSciNet  Google Scholar 

  32. Kuksin, S., Shirikyan, A.: Mathematics of two-dimensional turbulence, Cambridge Tracts in Mathematics, vol. 194. Cambridge University Press, U.K. (2012)

    Book  MATH  Google Scholar 

  33. Serrin, J.: On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Rat. Mech. Anal. 9, 187–196 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pileckas, K.: Navier-Stokes system in domains with cylindrical outlets to infinity. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics, vol. 4, North Holland, pp. 447–647 (2007)

    Google Scholar 

  35. Temam, R.: Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1988)

    Book  MATH  Google Scholar 

  36. Vishik, M.J., Fursikov, A.V.: Mathematical Problems of Statistical Hydromechanics. Kluwer Academic Publication, Dordrecht (1988)

    Book  MATH  Google Scholar 

  37. Vishik, M.J.: Asymptotic Behaviour of Solutions of Evolutionary Equations. Cambridge University Press, Lezioni Lincee (1992)

    MATH  Google Scholar 

  38. Morse, E.C.: Eigenfunctions of the curl in cylindrical geometry. J. Math. Phys. 46, 113511-1–113511-13 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Truesdell, C.A.: The Kinematics of Vorticity. Indiana University Press, Bloomington, Indiana (1954)

    MATH  Google Scholar 

  40. Brown, G.L., Roshko, A.: On density effects and large structure in turbulent mixing layers. JFM 64, 775–816 (1974)

    Article  ADS  MATH  Google Scholar 

  41. Constantin, P.: Analysis of Hydrodynamic Models. CBMS-NSF Regional Conference Series in Applied Mathematics (2017)

    Google Scholar 

  42. Ciarlet, P.G.: Mathematical Elasticity: Three-dimensional Elasticity, vol. 1. Elsevier Sci. Pub, Amsterdam, The Netherlands (1988)

    MATH  Google Scholar 

  43. Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 1. The MIT Press, Cambridge Mass (1975)

    Google Scholar 

  44. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge, U.K. (2001)

    MATH  Google Scholar 

  45. Casey, J., Naghdi, P.M.: On the lagrangian description of vorticity. Arch. Rational Mech. Anal. 115, 1–14 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Vladimirov, V.A., Moffatt, H.K.: On general transformations and variational principles for the magnetohydrodynamics of ideal fluids. Part 1. Fundamental principles. JFM 283, 125–139 (2001)

    Article  ADS  MATH  Google Scholar 

  47. Milnor, J.: Morse Theory. Princeton University Press (1963)

    Google Scholar 

  48. Meneveau, C.: Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annua. Rev. Fluid Mech. 43, 219–245 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Vieillefosse, P.: Local interaction between vorticity and shear in a perfect incompressible fluid. J. Phys. France 43, 837–842 (1982)

    Article  MathSciNet  Google Scholar 

  50. Vieillefosse, P.: Internal motion of a small element of fluid in an inviscid flow. Physica A 125, 150–162 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Cantwell, B.J.: Exact solution of a restricted Euler equation for the velocity gradient tensor. Phys. Fluids A 4, 782–793 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Gibbon, J.D., Galanti, B. and Kerr, R.M.: Stretching and compression of vorticity in the 3D euler equations. In: Hunt, J.C.R., Vassilicos, J.C. (eds.) Turbulence Structure and Vortex Dynamics. Cambridge University Press (2000)

    Google Scholar 

  53. Wilczek, M., Meneveau, C.: Pressure Hessian and viscous contributions to velocity gradient statistics based on Gaussian random fields. JFM 756, 191–225 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Kollmann .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kollmann, W. (2019). Navier–Stokes Equations. In: Navier-Stokes Turbulence. Springer, Cham. https://doi.org/10.1007/978-3-030-31869-7_2

Download citation

Publish with us

Policies and ethics