Skip to main content

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 135))

  • 414 Accesses

Abstract

Introduction of our concepts of Passive Scene Recognition and Active Scene Recognition as well as of our research statements and contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “X” stands for any configuration in 2 in Fig. 1.1, from “Pause” to “Do not like”.

  2. 2.

    Even though the inventors of the Implicit Shape Models present a probabilistic motivation for their approach in [30], we do not regard it as a probabilistic approach in a strict sense.

  3. 3.

    In the following, we use the term scene (category) model to designate the entire hierarchical model, including all subscenes.

  4. 4.

    In the latter case, object poses are not defined relative to each other but all in relation to a coordinate frame fixed in the environment.

  5. 5.

    The distinction between informed and uninformed search originates from discussions [37, p. 64] about general-purpose search algorithms.

References

  1. euRobotics Aisbl: Strategic research agenda - for robotics in Europe-2014–2020. https://eu-robotics.net/cms/upload/downloads/ppp-documents/SRA2020_SPARC.pdf (2013 & 2014). Accessed 20 Nov 2016

  2. Allgeyer, T.: Sechsdimensionale Lokalisierung texturierter Gegenstände in RGBD-Daten auf Basis randomisierter Bäume und Merkmale aus orientierten Punktpaaren. Bachelor’s thesis, Advisor: P. Meißner, Reviewer: R. Dillmann, Karlsruhe Institute of Technology (2015)

    Google Scholar 

  3. Aumann-Cleres, F.: Markerbasiertes Kalibrieren der kinematischen Kette und Aufstellen der Rückwärtstransformation zwischen der Basis und dem Sensorkopf eines mobilen Roboters. Bachelor’s thesis, Advisor: P. Meißner, Reviewer: R. Dillmann, Karlsruhe Institute of Technology (2016)

    Google Scholar 

  4. Aydemir, A., Sjöö, K., Folkesson, J., Pronobis, A., Jensfelt, P.: Search in the real world: active visual object search based on spatial relations. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 2818–2824. IEEE (2011)

    Google Scholar 

  5. Azad, P., Asfour, T., Dillmann, R.: Accurate shape-based 6-DOF pose estimation of single-colored objects. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009. IROS 2009, pp. 2690–2695. IEEE (2009)

    Google Scholar 

  6. Azad, P., Asfour, T., Dillmann, R.: Combining harris interest points and the sift descriptor for fast scale-invariant object recognition. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009. IROS 2009, pp. 4275–4280. IEEE (2009)

    Google Scholar 

  7. Azad, P., Gockel, T., Dillmann, R.: Computer Vision: Principles and Practice. Elektor International Media (2008)

    Google Scholar 

  8. Ballard, D.: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit. 13(2), 111–122 (1981)

    Article  Google Scholar 

  9. Chen, P.P.S.: The entity-relationship model–toward a unified view of data. ACM Trans. Database Syst. (TODS) 1(1), 9–36 (1976)

    Article  MathSciNet  Google Scholar 

  10. Chen, S., Li, Y., Wang, W., Zhang, J.: Active Sensor Planning for Multiview Vision Tasks, vol. 1. Springer, Berlin (2008)

    Google Scholar 

  11. Clementini, E., Di Felice, P., Van Oosterom, P.: A small set of formal topological relationships suitable for end-user interaction. In: International Symposium on Spatial Databases, pp. 277–295. Springer, Berlin (1993)

    Google Scholar 

  12. Clementini, E., Laurini, R.: Un cadre conceptuel pour modéliser les relations spatiales. Revue des Nouvelles Technologies de l’Information (RNTI) 14, 1–17 (2008)

    Google Scholar 

  13. Dehmani, S.: Realisierung von Kinematik, Lokalisierung und Bahnplanung für einen mobilen Serviceroboter mithilfe des ROS Navigation Stack. Bachelor’s thesis, Advisor: P. Meißner, Reviewer: R. Dillmann, Karlsruhe Institute of Technology (2014)

    Google Scholar 

  14. Dillmann, R., Rogalla, O., Ehrenmann, M., Zöllner, R., Bordegoni, M.: Learning robot behaviour and skills based on human demonstration and advice: the machine learning paradigm, in Robotics Research-international Symposium, vol. 9, pp. 229–238 (2000)

    Google Scholar 

  15. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience, New York (2000)

    Google Scholar 

  16. European Commission: Robotics — Horizon 2020 — European Commission. http://ec.europa.eu/programmes/horizon2020/en/h2020-section/robotics. Accessed 11 April 2018

  17. Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. CVPR 2003, vol. 2, pp. II–II. IEEE (2003)

    Google Scholar 

  18. Freeman, J.: The modelling of spatial relations. Comput. Graph. Image Process. 4(2), 156–171 (1975)

    Article  Google Scholar 

  19. Freksa, C.: Using Orientation Information for Qualitative Spatial Reasoning. Springer, Berlin (1992)

    Google Scholar 

  20. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Marín-Jiménez, M.J.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognit. 47(6), 2280–2292 (2014)

    Article  Google Scholar 

  21. Grauman, K., Leibe, B.: Visual object recognition. Synth. Lect. Artif. Intell. Mach. Learn. 5(2), 1–181 (2011)

    Article  Google Scholar 

  22. Heller, F.: Intuitive Visualisierung des Erkennungsprozesses und der Ergebnisse hierarchischer Implicit Shape Models, sowie der gelernten Szenen. Bachelor’s thesis, Advisor: P. Meißner, Reviewer: R. Dillmann, Karlsruhe Institute of Technology (2016)

    Google Scholar 

  23. I waste so much time: plate etiquette — IWSMT, I waste so much time. http://iwastesomuchtime.com/on/?i=80896. Accessed 18 Jan 2017

  24. Jäkel, R.: Learning of generalized manipulation strategies in service robotics. Ph.D. thesis, Karlsruhe Institute of Technology (KIT), Karlsruhe (2013)

    Google Scholar 

  25. Jäkel, R., Schmidt-Rohr, S.R., Lösch, M., Kasper, A., Dillmann, R.: Learning of generalized manipulation strategies in the context of programming by demonstration. In: 2010 10th IEEE-RAS International Conference on Humanoid Robots, pp. 542–547. IEEE (2010)

    Google Scholar 

  26. Jiang, X., Bunke, H.: Dreidimensionales Computersehen: Gewinnung und Analyse von Tiefenbildern. Springer, Berlin (1997)

    Google Scholar 

  27. Kasper, A., Xue, Z., Dillmann, R.: The kit object models database: an object model database for object recognition, localization and manipulation in service robotics. Int. J. Robot. Res. 31(8), 927–934 (2012)

    Article  Google Scholar 

  28. Kleinert, D.: Integration farb- und featurebasierter Objektlokalisierung in das Robotik-Softwareframework ROS. Student research project, Advisor: P. Meißner, Reviewer: R. Dillmann, Karlsruhe Institute of Technology (2012)

    Google Scholar 

  29. Kunze, L., Doreswamy, K.K., Hawes, N.: Using qualitative spatial relations for indirect object search. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 163–168. IEEE (2014)

    Google Scholar 

  30. Leibe, B., Leonardis, A., Schiele, B.: Robust object detection with interleaved categorization and segmentation. Int. J. Comput. Vis. 77(1–3), 259–289 (2008)

    Article  Google Scholar 

  31. Lin, D., Fidler, S., Urtasun, R.: Holistic scene understanding for 3d object detection with RGBD cameras. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1417–1424 (2013)

    Google Scholar 

  32. Lorbach, M., Hofer, S., Brock, O.: Prior-assisted propagation of spatial information for object search. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 2904–2909. IEEE (2014)

    Google Scholar 

  33. Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., Konolige, K.: The office marathon: robust navigation in an indoor office environment. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 300–307. IEEE (2010)

    Google Scholar 

  34. Marek, F.: Optimierung eines Dynamic Window Approach Planers und Realisierung eines Follow the Carrot Planers zur kollisionsfreien Navigation unter ROS. Bachelor’s thesis, Advisor: P. Meißner, Reviewer: R. Dillmann, Karlsruhe Institute of Technology (2016)

    Google Scholar 

  35. Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 413–420. IEEE (2009)

    Google Scholar 

  36. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on Open Source Software, p. 5. Kobe (2009)

    Google Scholar 

  37. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, Third International edn. Prentice Hall Press, Prentice (2010)

    Google Scholar 

  38. Schleicher, R.: Lösung des Next-Best-View-Problems mittels eines punktwolkenbasierten Iterationsverfahrens zur 3D-Objektsuche für mobile Roboter. Bachelor’s thesis, Advisor: P. Meißner, Reviewer: G. Thäter, Karlsruhe Institute of Technology (2014)

    Google Scholar 

  39. Schröder, J.: Aufbau eines mobilen Roboters mit Simatic-Komponenten und Evaluation der Step 7 EMC-Bibliothek. Diploma thesis, Advisor: T. Gockel, Reviewer: R. Dillmann, Karlsruhe Institute of Technology (2002)

    Google Scholar 

  40. Scott, W., Roth, G., Rivest, J.F.: View planning for automated 3d object reconstruction inspection. ACM Comput. Surv. 35(1) (2003)

    Google Scholar 

  41. Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer Science + Business Media, Berlin (2008)

    Google Scholar 

  42. Ulbrich, S., Menzel, T., Reschka, A., Schuldt, F., Maurer, M.: Defining and substantiating the terms scene, situation, and scenario for automated driving. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems, pp. 982–988. IEEE (2015)

    Google Scholar 

  43. Wang, R.F., Simons, D.J.: Active and passive scene recognition across views. Cognition 70(2), 191–210 (1999)

    Article  Google Scholar 

  44. Weisstein, E.W.: Complete graph — a wolfram web resource. http://mathworld.wolfram.com/CompleteGraph.html. Accessed 01 Mar 2018

  45. Wikipedia: eating utensil etiquette — Wikipedia, the free encyclopedia online. https://en.wikipedia.org/wiki/Eating_utensil_etiquette. Accessed 18 Jan 2017

  46. Ye, Y., Tsotsos, J.K.: Sensor planning for 3d object search. Comput. Vis. Image Underst. 73(2), 145–168 (1999)

    Article  Google Scholar 

  47. Zhang, Z.: Microsoft kinect sensor and its effect. IEEE Multimedia 19(2), 4–10 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Meißner .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meißner, P. (2020). Introduction. In: Indoor Scene Recognition by 3-D Object Search. Springer Tracts in Advanced Robotics, vol 135. Springer, Cham. https://doi.org/10.1007/978-3-030-31852-9_1

Download citation

Publish with us

Policies and ethics