Skip to main content

Nanogels-Based Mucosal Vaccines

  • Chapter
  • First Online:
Nanovaccines

Abstract

Innovative vaccines are required to fight human and animal diseases. Improved immunogenicity, safety, easy administration, and low cost are among the innovations that are pursued in this field. Nanogels are materials with attractive features to meet these requirements; they consist of solid, jelly like materials produced by crosslinking of synthetic or natural polymers (or a combination of both) with a high water-holding capacity. Herein, the state of the art of nanogels-based vaccines is provided. Synthesis and functionalization methods for nanogels are described. Thus far, several groups have evaluated nanogels as vaccine delivery vehicles leading to promising data for nanovaccines against cancer, obesity, and infectious diseases. The most advanced candidates are nanovaccines against cancer, based on cholesteryl pullulan nanogels, that have been evaluated in clinical trials revealing proper immunogenicity and safety. The key perspectives for this topic include expanding the assessment of mucosal vaccines and implementing green syntheses approaches, which could lead to lower production cost and enhanced safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyoshi K, Yamaguchi S, Sunamoto J (1991) Self-aggregates of hydrophobic polysaccharide derivatives. Chem Lett 20(7):1263–1266

    Article  Google Scholar 

  • Akiyoshi K, Deguchi S, Moriguchi N, Yamaguchi S, Sunamoto J (1993) Self-aggregates of hydrophobized polysaccharides in water. Formation and characteristics of nanoparticles. Macromolecules 26(12):3062–3068

    Article  CAS  Google Scholar 

  • Alshehri R, Ilyas AM, Hasan A, Arnaout A, Ahmed F, Memic A (2016) Carbon nanotubes in biomedical applications: factors, mechanisms, and remedies of toxicity. J Med Chem 59(18):8149–8167

    Article  CAS  Google Scholar 

  • Ayame H, Morimoto N, Akiyoshi K (2008) Self-assembled cationic nanogels for intracellular protein delivery. Bioconjug Chem 19(4):882–890

    Article  CAS  Google Scholar 

  • Azegami T, Yuki Y, Sawada S, Mejima M, Ishige K, Akiyoshi K, Itoh H, Kiyono H (2017) Nanogel-based nasal ghrelin vaccine prevents obesity. Mucosal Immunol 10:1351–1360

    Article  CAS  Google Scholar 

  • Cheng KC, Demirci A, Catchmark JM (2011) Pullulan: biosynthesis, production, and applications. Appl Microbiol Biotechnol 92(1):29

    Article  CAS  Google Scholar 

  • Chiu M, Bao C, Sadarangani M (2019) Dilemmas with rotavirus vaccine: the neonate and immunocompromised. Pediatr Infect Dis J 38.(6S Suppl 1:S43–S46

    Article  Google Scholar 

  • Feng JL, Qi JR, Yin SW, Wang JM, Guo J, Weng JY, Liu QR, Yang XQ (2015) Fabrication and characterization of stable soy β-conglycinin-dextran core-shell nanogels prepared via a self-assembly approach at the isoelectric point. J Agric Food Chem 63(26):6075–6083

    Article  CAS  Google Scholar 

  • Fukuyama Y, Yuki Y, Katakai Y, Harada N, Takahashi H, Takeda S, Mejima M, Joo S, Kurokawa S, Sawada S, Shibata H, Park EJ, Fujihashi K, Briles DE, Yasutomi Y, Tsukada H, Akiyoshi K, Kiyono H (2015) Nanogel-based pneumococcal surface protein A nasal vaccine induces microRNA-associated Th17 cell responses with neutralizing antibodies against Streptococcus pneumoniae in macaques. Mucosal Immunol 8:1144–1153

    Article  CAS  Google Scholar 

  • Gheibi-Hayat SM, Darroudi M (2019) Nanovaccine: a novel approach in immunization. J Cell Physiol 234(8):12530–12536

    Article  CAS  Google Scholar 

  • Gu XG, Schmitt M, Hiasa A, Nagata Y, Ikeda H, Sasaki Y, Akiyoshi K, Sunamoto J, Nakamura H, Kuribayashi K, Shiku H (1998) A novel hydrophobized polysaccharide/oncoprotein complex vaccine induces in vitro and in vivo cellular and humoral immune responses against HER2-expressing murine sarcomas. Cancer Res 58(15):3385–3390

    CAS  Google Scholar 

  • Kabanov AV, Vinogradov SV (2009) Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed 48(30):5418–5429

    Article  CAS  Google Scholar 

  • Kageyama S, Kitano S, Hirayama M, Nagata Y, Imai H, Shiraishi T, Akiyoshi K, Scott AM, Murphy R, Hoffman EW, Old LJ, Katayama N, Shiku H (2008) Humoral immune responses in patients vaccinated with 1–146 HER2 protein complexed with cholesteryl pullulan nanogel. Cancer Sci 99:601–607

    Article  CAS  Google Scholar 

  • Kendre PN, Satav TS (2019) Current trends and concepts in the design and development of nanogel carrier systems. Polym Bull 76(3):1595–1617

    Article  CAS  Google Scholar 

  • Kitano S, Kageyama S, Nagata Y, Miyahara Y, Hiasa A, Naota H, Okumura S, Imai H, Shiraishi T, Masuya M, Nishikawa M, Sunamoto J, Akiyoshi K, Kanematsu T, Scott AM, Murphy R, Hoffman EW, Old LJ, Shiku H (2006) HER2-specific T-cell immune responses in patients vaccinated with truncated HER2 protein complexed with nanogels of cholesteryl pullulan. Clin Cancer Res 12:7397–7405

    Article  CAS  Google Scholar 

  • Kong IG, Sato A, Yuki Y, Nochi T, Takahashi H, Sawada S, Mejima M, Kurokawa S, Okada K, Sato S, Briles DE, Kunisawa J, Inoue Y, Yamamoto M, Akiyoshi K, Kiyono H (2013) Nanogel-based PspA intranasal vaccine prevents invasive disease and nasal colonization by Streptococcus pneumoniae. Infect Immun 81:1625–1634

    Article  CAS  Google Scholar 

  • Krauss S, Zhang CY, Lowell BB (2005) The mitochondrial uncoupling-protein homologues. Nat Rev Mol Cell Biol 6(3):248

    Article  CAS  Google Scholar 

  • Kumari M, Survase SA, Singhal RS (2008) Production of schizophyllan using Schizophyllum commune NRCM. Bioresour Technol 99(5):1036–1043

    Article  CAS  Google Scholar 

  • Kyogoku N, Ikeda H, Tsuchikawa T, Abiko T, Fujiwara A, Maki T, Yamamura Y, Ichinokawa M, Tanaka K, Imai N, Miyahara Y, Kageyama S, Shiku H, Hirano S (2016) Time-dependent transition of the immunoglobulin G subclass and immunoglobulin E response in cancer patients vaccinated with cholesteryl pullulan-melanoma antigen gene-A4 nanogel. Oncol Lett 12:4493–4504

    Article  CAS  Google Scholar 

  • Layton JB, Butler AM, Panozzo CA, Brookhart MA (2018) Rotavirus vaccination and short-term risk of adverse events in US infants. Paediatr Perinat Epidemiol 32(5):448–457

    Article  Google Scholar 

  • Li D, Kordalivand N, Fransen MF, Ossendorp F, Raemdonck K, Vermonden T, Hennink WE, Van Nostrum CF (2015) Reduction-sensitive dextran nanogels aimed for intracellular delivery of antigens. Adv Funct Mater 25(20):2993–3003

    Article  CAS  Google Scholar 

  • Li D, Sun F, Bourajjaj M, Chen Y, Pieters EH, Chen J, van den Dikkenberg JB, Lou B, Camps MG, Ossendorp F, Hennink WE, Vermonden T, van Nostrum CF (2016) Strong in vivo antitumor responses induced by an antigen immobilized in nanogels via reducible bonds. Nanoscale 8:19592–19604

    Article  CAS  Google Scholar 

  • Lopez-Chaves C, Soto-Alvaredo J, Montes-Bayon M, Bettmer J, Llopis J, Sanchez-Gonzalez C (2017) Gold nanoparticles: distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine 14:1):1–1)12

    Google Scholar 

  • Matyjaszewski K, Davis TP (2002) Handbook of radical polymerization. Wiley, Hoboken

    Book  Google Scholar 

  • Miquel-Clopés A, Bentley EG, Stewart JP, Carding SR (2019) Mucosal vaccines and technology. Clin Exp Immunol 196(2):205–214

    Google Scholar 

  • Miyamoto N, Mochizuki S, Sakurai K (2014) Enhanced immunostimulation with crosslinked CpG-DNA/β-1, 3-glucan nanoparticle through hybridization. Chem Lett 43(7):991–993

    Article  CAS  Google Scholar 

  • Miyamoto N, Mochizuki S, Fujii S, Yoshida K, Sakurai K (2017) Adjuvant activity enhanced by cross-linked CpG-oligonucleotides in β-glucan nanogel and its antitumor effect. Bioconjug Chem 28:565–573

    Article  CAS  Google Scholar 

  • Moad G, Solomon DH (2006) The chemistry of radical polymerization. Elsevier, Amsterdam

    Google Scholar 

  • Muraoka D, Harada N, Hayashi T, Tahara Y, Momose F, Sawada S, Mukai SA, Akiyoshi K, Shiku H (2014) Nanogel-based immunologically stealth vaccine targets macrophages in the medulla of lymph node and induces potent antitumor immunity. ACS Nano 8:9209–9218

    Article  CAS  Google Scholar 

  • Neamtu I, Rusu AG, Diaconu A, Nita LE, Chiriac AP (2017) Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv 24(1):539–557

    Article  CAS  Google Scholar 

  • Nochi T, Yuki Y, Takahashi H, Sawada S, Mejima M, Kohda T, Harada N, Kong IG, Sato A, Kataoka N, Tokuhara D, Kurokawa S, Takahashi Y, Tsukada H, Kozaki S, Akiyoshi K, Kiyono H (2010) Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat Mater 9:572–578

    Article  CAS  Google Scholar 

  • Nuhn L, Vanparijs N, De Beuckelaer A, Lybaert L, Verstraete G, Deswarte K, Lienenklaus S, Shukla NM, Salyer AC, Lambrecht BN, Grooten J (2016) pH-degradable imidazoquinoline-ligated nanogels for lymph node-focused immune activation. Proc Natl Acad Sci 113(29):8098–8103

    Article  CAS  Google Scholar 

  • Nuhn L, Van Hoecke L, Deswarte K, Schepens B, Li Y, Lambrecht BN, De Koker S, David SA, Saelens X, De Geest BG (2018) Potent anti-viral vaccine adjuvant based on pH-degradable nanogels with covalently linked small molecule imidazoquinoline TLR7/8 agonist. Biomaterials 178:643–651

    Article  CAS  Google Scholar 

  • Patarroyo ME, Bermúdez A, Moreno-Vranich A (2012) Towards the development of a fully protective Plasmodium falciparum antimalarial vaccine. Expert Rev Vaccines 11(9):1057–1070

    Article  CAS  Google Scholar 

  • Purwada A, Tian YF, Huang W, Rohrbach KM, Deol S, August A, Singh A (2016) Self-assembly protein nanogels for safer Cancer immunotherapy. Adv Healthc Mater 5:1413–1419

    Article  CAS  Google Scholar 

  • Raemdonck K, Demeester J, De Smedt S (2009) Advanced nanogel engineering for drug delivery. Soft Matter 5(4):707–715

    Article  CAS  Google Scholar 

  • Rosales-Mendoza S, Salazar-González JA, Decker EL, Reski R (2016) Implications of plant glycans in the development of innovative vaccines. Expert Rev Vaccines 15(7):915–925

    Article  CAS  Google Scholar 

  • Ross AC, Chen Q, Ma Y (2011) Vitamin a and retinoic acid in the regulation of B-cell development and antibody production. Vitam Horm 86:103–126

    Article  CAS  Google Scholar 

  • Sanson N, Rieger J (2010) Synthesis of nanogels/microgels by conventional and controlled radical crosslinking copolymerization. Polym Chem 1(7):965–977

    Article  CAS  Google Scholar 

  • Soni KS, Desale SS, Bronich TK (2016) Nanogels: an overview of properties, biomedical applications and obstacles to clinical translation. J Control Release 240:109–126

    Article  CAS  Google Scholar 

  • Toyoda M, Hama S, Ikeda Y, Nagasaki Y, Kogure K (2015) Anti-cancer vaccination by transdermal delivery of antigen peptide-loaded nanogels via iontophoresis. Int J Pharm 483:110–114

    Article  CAS  Google Scholar 

  • Uthaman S, Maya S, Jayakumar R, Cho CS, Park IK (2014) Carbohydrate-based nanogels as drug and gene delivery systems. J Nanosci Nanotechnol 14(1):694–704

    Article  CAS  Google Scholar 

  • Verheyen E, Delain-Bioton L, van der Wal S, el Morabit N, Barendregt A, Hennink WE, van Nostrum CF (2010) Conjugation of methacrylamide groups to a model protein via a reducible linker for immobilization and subsequent triggered release from hydrogels. Macromol Biosci 10(12):1517–1526

    Article  CAS  Google Scholar 

  • Wang C, Li P, Liu L, Pan H, Li H, Cai L, Ma Y (2016) Self-adjuvanted nanovaccine for cancer immunotherapy: role of lysosomal rupture-induced ROS in MHC class I antigen presentation. Biomaterials 79:88–100

    Article  CAS  Google Scholar 

  • Yadav H, Al Halabi N, Alsalloum G (2017) Nanogels as novel drug delivery systems—a review. J Pharm Pharm Res 1(1):5

    Google Scholar 

  • Zhang X, Malhotra S, Molina M, Haag R (2015) Micro- and nanogels with labile crosslinks – from synthesis to biomedical applications. Chem Soc Rev 44:1948–1973

    Article  CAS  Google Scholar 

  • Zhang MY, Guo J, Hu XM, Zhao SQ, Li SL, Wang J (2019) An in vivo anti-tumor effect of eckol from marine brown algae by improving the immune response. Food Funct 10:4361. https://doi.org/10.1039/c9fo00865a

    Article  CAS  Google Scholar 

  • Zhu G, Zhang F, Ni Q, Niu G, Chen X (2017) Efficient nanovaccine delivery in cancer immunotherapy. ACS Nano 11(3):2387–2392

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rosales-Mendoza, S., González-Ortega, O. (2019). Nanogels-Based Mucosal Vaccines. In: Nanovaccines. Springer, Cham. https://doi.org/10.1007/978-3-030-31668-6_6

Download citation

Publish with us

Policies and ethics