Skip to main content

PLGA-Based Mucosal Nanovaccines

  • Chapter
  • First Online:
Nanovaccines

Abstract

Poly(D,L-lactic-co-glycolic acid) (PLGA or PLG) is a linear copolymer composed of lactic and glycolic acids with biodegradability and biocompatibility properties recognized by the FDA. PLGA nanoparticles have been applied in vaccinology as antigen delivery vehicles capable of protecting antigens from degradation and being efficiently captured by antigen presenting cells. The current status on the development of PLGA-based nanovaccines is presented in this chapter and the key perspectives for this topic identified. Bacterial, viral, and allergic diseases have been targeted by using PLGA-based formulations. For most of the candidates enhanced humoral responses providing immunoprotection against experimental pathogen challenges has been achieved. Enhancement of cytotoxic lymphocyte responses has also been proven, generating relevant perspectives in the field of cancer immunotherapy. The promising findings from the evaluations of PLGA-based nanovaccines justifies the completion of preclinical evaluations for many candidates and, given the experience on the use of PLGA in the biomedical field, the beginning of clinical trials is anticipated in the short term. Therefore, among the currently available nanomaterials, PLGA nanoparticles are one of the most promising for the development of nanovaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adomako M, St-Hilaire S, Zheng Y, Eley J, Marcum RD, Sealey W, Donahower BC, Lapatra S, Sheridan PP (2012) Oral DNA vaccination of rainbow trout, Oncorhynchus mykiss (Walbaum), against infectious haematopoietic necrosis virus using PLGA [poly(D,L-lactic-co-glycolic acid)] nanoparticles. J Fish Dis 35(3):203–214

    Article  CAS  Google Scholar 

  • Barichello JM, Morishita M, Takayama K, Nagai T (1999) Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm 25(4):471–476

    Article  CAS  Google Scholar 

  • Boyaka PN (2017) Inducing mucosal IgA: a challenge for vaccine adjuvants and delivery systems. J Immunol 199(1):9–16

    Article  CAS  Google Scholar 

  • Bussio JI, Molina-Perea C, González-Aramundiz JV (2018) Lower-sized chitosan Nanocapsules for transcutaneous antigen delivery. Nanomaterials (Basel) 26:8(9)

    Google Scholar 

  • Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z (2016) Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat Commun 7:13193

    Article  CAS  Google Scholar 

  • Chudina T, Labyntsev A, Manoilov K, Kolybo D, Komisarenko S (2015) Cellobiose-coated poly(lactide-co-glycolide) particles loaded with diphtheria toxoid for per os immunization. Croat Med J 56(2):85–93

    Article  CAS  Google Scholar 

  • Cohen-Sela E, Chorny M, Koroukhov N, Danenberg HD, Golomb G (2009) A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J Control Release 133(2):90–95

    Article  CAS  Google Scholar 

  • Conway MA, Madrigal-Estebas L, McClean S, Brayden DJ, Mills KH (2001) Protection against Bordetella pertussis infection following parenteral or oral immunization with antigens entrapped in biodegradable particles: effect of formulation and route of immunization on induction of Th1 and Th2 cells. Vaccine 19(15–16):1940–1950

    Article  CAS  Google Scholar 

  • Cruz LJ, Tacken PJ, Fokkink R, Joosten B, Stuart MC, Albericio F, Torensma R, Figdor CG (2010) Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J Control Release 144(2):118–126

    Article  CAS  Google Scholar 

  • Delgado A, Lavelle EC, Hartshorne M, Davis SS (1999) PLG microparticles stabilised using enteric coating polymers as oral vaccine delivery systems. Vaccine 17(22):2927–2938

    Article  CAS  Google Scholar 

  • Dubey S, Avadhani K, Mutalik S, Sivadasan SM, Maiti B, Paul J, Girisha SK, Venugopal MN, Mutoloki S, Evensen Ø, Karunasagar I, Munang’andu HM (2016) Aeromonas hydrophila OmpW PLGA nanoparticle Oral vaccine shows a dose-dependent protective immunity in Rohu (Labeo rohita). Vaccines (Basel) 4(2):pii: E21

    Article  CAS  Google Scholar 

  • Garinot M, Fiévez V, Pourcelle V, Stoffelbach F, des Rieux A, Plapied L, Theate I, Freichels H, Jérôme C, Marchand-Brynaert J, Schneider YJ, Préat V (2007) PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J Control Release 120(3):195–204

    Article  CAS  Google Scholar 

  • Ghotbi Z, Haddadi A, Hamdy S, Hung RW, Samuel J, Lavasanifar A (2011) Active targeting of dendritic cells with mannan-decorated PLGA nanoparticles. J Drug Target 19(4):281–292

    Article  CAS  Google Scholar 

  • Gornati L, Zanoni I, Granucci F (2018) Dendritic cells in the cross hair for the generation of tailored vaccines. Front Immunol 9:1484

    Article  CAS  Google Scholar 

  • Govender T, Stolnik S, Garnett MC, Illum L, Davis SS (1999) PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release 57(2):171–185

    Article  CAS  Google Scholar 

  • Gupta PN, Mahor S, Rawat A, Khatri K, Goyal A, Vyas SP (2006) Lectin anchored stabilized biodegradable nanoparticles for oral immunization 1. Development and in vitro evaluation. Int J Pharm 318(1–2):163–173

    Article  CAS  Google Scholar 

  • Gupta PN, Khatri K, Goyal AK, Mishra N, Vyas SP (2007) M-cell targeted biodegradable PLGA nanoparticles for oral immunization against hepatitis B. J Drug Target 15(10):701–713

    Article  CAS  Google Scholar 

  • Hayakawa Y, Godfrey DI, Smyth MJ (2004) α-Galactosylceramide: potential immunomodulatory activity and future application [general articles]. Curr Med Chem 11(2):241–252

    Article  CAS  Google Scholar 

  • Ho NI, Huis In’t Veld LGM, Raaijmakers TK, Adema GJ (2018) Adjuvants enhancing cross-presentation by dendritic cells: the key to more effective vaccines? Front Immunol 9:2874

    Article  CAS  Google Scholar 

  • Iranpour S, Nejati V, Delirezh N, Biparva P, Shirian S (2016) Enhanced stimulation of anti-breast cancer T cells responses by dendritic cells loaded with poly lactic-co-glycolic acid (PLGA) nanoparticle encapsulated tumor antigens. J Exp Clin Cancer Res 35(1):168

    Article  CAS  Google Scholar 

  • Jahan ST, Sadat SM, Haddadi A (2018) Design and immunological evaluation of anti-CD205-tailored PLGA-based nanoparticulate cancer vaccine. Int J Nanomedicine 13:367–386

    Article  CAS  Google Scholar 

  • Jung T, Kamm W, Breitenbach A, Hungerer KD, Hundt E, Kissel T (2001) Tetanus toxoid loaded nanoparticles from sulfobutylated poly(vinyl alcohol)-graft-poly(lactide-co-glycolide): evaluation of antibody response after oral and nasal application in mice. Pharm Res 18(3):352–360

    Article  CAS  Google Scholar 

  • Kaneko K, McDowell A, Ishii Y, Hook S (2017) Characterization and evaluation of stabilized particulate formulations as therapeutic oral vaccines for allergy. J Liposome Res 21:1–28

    Google Scholar 

  • Kim SY, Doh HJ, Ahn JS, Ha YJ, Jang MH, Chung SI, Park HJ (1999a) Induction of mucosal and systemic immune response by oral immunization with H. pylori lysates encapsulated in poly(D,L-lactide-co-glycolide) microparticles. Vaccine 17(6):607–616

    Article  CAS  Google Scholar 

  • Kim SY, Doh HJ, Jang MH, Ha YJ, Chung SI, Park HJ (1999b) Oral immunization with helicobacter pylori-loaded poly(D, L-lactide-co-glycolide) nanoparticles. Helicobacter 4(1):33–39

    Article  CAS  Google Scholar 

  • Kim H, Griffith T, Panyam J (2019) Poly(D,L-lactide-co-glycolide) nanoparticles as a vaccine delivery platform for TLR7/8 agonist-based cancer vaccine. J Pharmacol Exp Ther 370(3):715–724. https://doi.org/10.1124/jpet.118.254953

    Article  Google Scholar 

  • Lactel (2019) Absorbable polymers. http://www.absorbables.com/technical/biodegradation.html. Visited on 2019

  • Lee PW, Pokorski JK (2018) Poly(lactic-co-glycolic acid) devices: production and applications for sustained protein delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. https://doi.org/10.1002/wnan.1516

    Google Scholar 

  • Liu W, Wen S, Shen M, Shi X (2014) Doxorubicin-loaded poly (lactic-co-glycolic acid) hollow microcapsules for targeted drug delivery to cancer cells. New J Chem 38(8):3917–3924

    Article  CAS  Google Scholar 

  • Ma T, Wang L, Yang T, Ma G, Wang S (2014) M-cell targeted polymeric lipid nanoparticles containing a toll-like receptor agonist to boost oral immunity. Int J Pharm 473(1–2):296–303

    Article  CAS  Google Scholar 

  • Ma YP, Ke H, Liang ZL, Ma JY, Hao L, Liu ZX (2017) Protective efficacy of cationic-PLGA microspheres loaded with DNA vaccine encoding the sip gene of Streptococcus agalactiae in tilapia. Fish Shellfish Immunol 66:345–353

    Article  CAS  Google Scholar 

  • McConnell EL, Basit AW, Murdan S (2008) Colonic antigen administration induces significantly higher humoral levels of colonic and vaginal IgA, and serum IgG compared to oral administration. Vaccine 26(5):639–646

    Article  CAS  Google Scholar 

  • Mishra N, Tiwari S, Vaidya B, Agrawal GP, Vyas SP (2011) Lectin anchored PLGA nanoparticles for oral mucosal immunization against hepatitis B. J Drug Target 19(1):67–78

    Article  CAS  Google Scholar 

  • Nazarian S, Gargari SL, Rasooli I, Hasannia S, Pirooznia N (2014) A PLGA-encapsulated chimeric protein protects against adherence and toxicity of enterotoxigenic Escherichia coli. Microbiol Res 169(2–3):205–212

    Article  CAS  Google Scholar 

  • Niborski V, Li Y, Brennan F, Lane M, Torché AM, Remond M, Bonneau M, Riffault S, Stirling C, Hutchings G, Takamatsu H, Barnett P, Charley B, Schwartz-Cornil I (2006) Efficacy of particle-based DNA delivery for vaccination of sheep against FMDV. Vaccine 24(49–50):7204–7213

    Article  CAS  Google Scholar 

  • Pan L, Zhang Z, Lv J, Zhou P, Hu W, Fang Y, Chen H, Liu X, Shao J, Zhao F, Ding Y, Lin T, Chang H, Zhang J, Zhang Y, Wang Y (2014) Induction of mucosal immune responses and protection of cattle against direct-contact challenge by intranasal delivery with foot-and-mouth disease virus antigen mediated by nanoparticles. Int J Nanomedicine 9:5603–5618

    Article  CAS  Google Scholar 

  • Sarti F, Perera G, Hintzen F, Kotti K, Karageorgiou V, Kammona O, Kiparissides C, Bernkop-Schnürch A (2011) In vivo evidence of oral vaccination with PLGA nanoparticles containing the immunostimulant monophosphoryl lipid A. Biomaterials 32(16):4052–4057

    Article  CAS  Google Scholar 

  • Silva AL, Soema PC, Slütter B, Ossendorp F, Jiskoot W (2016) PLGA particulate delivery systems for subunit vaccines: linking particle properties to immunogenicity. Hum Vaccin Immunother 12(4):1056–1069

    Article  CAS  Google Scholar 

  • Tan Z, Liu W, Liu H, Li C, Zhang Y, Meng X, Tang T, Xi T, Xing Y (2017) Oral helicobacter pylori vaccine-encapsulated acid-resistant HP55/PLGA nanoparticles promote immune protection. Eur J Pharm Biopharm 111:33–43

    Article  CAS  Google Scholar 

  • Wang G, Pan L, Zhang Y, Wang Y, Zhang Z, Lü J, Zhou P, Fang Y, Jiang S (2011) Intranasal delivery of cationic PLGA nano/microparticles-loaded FMDV DNA vaccine encoding IL-6 elicited protective immunity against FMDV challenge. PLoS One 6(11):e27605

    Article  CAS  Google Scholar 

  • Wang Y, Wen Q, Choi S (2016a) FDA’s regulatory science program for generic PLA/PLGA-based drug products. Am Pharm Rev 19(4):5–9

    Google Scholar 

  • Wang Y, Li P, Truong-Dinh Tran T, Zhang J, Kong L (2016b) Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials 6(2):26

    Article  CAS  Google Scholar 

  • WHO (2013) Global vaccine action plan 2011–2020. World Health Organization

    Google Scholar 

  • Xu Y, Kim CS, Saylor DM, Koo D (2017) Polymer degradation and drug delivery in PLGA-based drug-polymer applications: a review of experiments and theories. J Biomed Mater Res B Appl Biomater 105(6):1692–1716

    Article  CAS  Google Scholar 

  • Yang X, Lian K, Meng T, Liu X, Miao J, Tan Y, Yuan H, Hu F (2018) Immune adjuvant targeting micelles allow efficient dendritic cell migration to lymph nodes for enhanced cellular immunity. ACS Appl Mater Interfaces 10(39):33532–33544. https://doi.org/10.1021/acsami.8b10081

    Article  CAS  Google Scholar 

  • Zhang L, Zeng Z, Hu C, Bellis SL, Yang W, Su Y, Zhang X, Wu Y (2016) Controlled and targeted release of antigens by intelligent shell for improving applicability of oral vaccines. Biomaterials 77:307–319

    Article  CAS  Google Scholar 

  • Zhu Q, Talton J, Zhang G, Cunningham T, Wang Z, Waters RC, Kirk J, Eppler B, Klinman DM, Sui Y, Gagnon S, Belyakov IM, Mumper RJ, Berzofsky JA (2012) Large intestine-targeted, nanoparticle-releasing oral vaccine to control genitorectal viral infection. Nat Med 18(8):1291–1296

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rosales-Mendoza, S., González-Ortega, O. (2019). PLGA-Based Mucosal Nanovaccines. In: Nanovaccines. Springer, Cham. https://doi.org/10.1007/978-3-030-31668-6_4

Download citation

Publish with us

Policies and ethics