Skip to main content

The Mucosal Immune System: An Outlook for Nanovaccines Development

  • Chapter
  • First Online:
Nanovaccines

Abstract

In mammals, the mucosal immune system is a complex network of cells, tissues, and soluble molecules that orchestrate the defense against pathogens or malignant cells; this immune system substantially differs from the one acting at the central level. Nanovaccines have emerged as a promising approach for the development of innovative vaccines, having enhanced immunogenicity and avoiding the use of attenuated/inactivated pathogens. This chapter transmits the essential knowledge on the mucosal immune system required to understand the design and evaluation of nanovaccines, with special emphasis in the function of the nose-associated lymphoid tissue (NALT) and the gut-associated lymphoid tissue (GALT) since the nasal and oral routes are the most explored in nanovaccine development. Antigens administered by mucosal routes are essentially sampled by M-cells, epithelial cells, and dendritic cells; once the antigen reaches the submucosa antigen presenting cells (APCs) it establishes an immune synapse with lymphocytes, which triggers their differentiation and expansion in the lymph nodes. Among the lymphocytes subsets involved in the adaptive immunity, T helper cells are key since they support the response of T and B lymphocytes by producing Th1 and Th2 cytokine profiles, respectively, acquire a Th17 phenotype that contributes to IgA responses, or can rather have suppressive roles by acquiring the regulatory T-cell phenotype (Treg) that is of relevance in therapies against autoimmune or inflammatory conditions. In contrast, T cytotoxic lymphocytes are specialized in killing virus-infected or malignant cells, whereas B mucosal lymphocytes are specialized in antibody production (mainly secretory IgA), which is a key effector mechanism to protect against infectious agents in the mucosa. The use of adjuvants is critical to trigger the desired immune response when mucosal routes are used. Although GALT and NALT share most of the cell types, they differ in the organization and induced immune responses in different mucosal compartments. For instance, intranasal immunization efficiently induces humoral responses in the airways and genital organs, whereas oral immunization induces mainly systemic and intestinal humoral responses, which is explained by the traffic of lymphocytes controlled by homing molecules. The knowledge regarding function and structure of NALT is still limited with respect to GALT. The current knowledge on the mucosal immune system has aided in the development of several nanovaccine candidates and opportunities for designing optimal nanovaccines will be expanded as long as the knowledge on this complex immune system increases in the following years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abusleme L, Moutsopoulos NM (2017) IL-17: overview and role in oral immunity and microbiome. Oral Dis 23(7):854–865

    Article  CAS  Google Scholar 

  • Ahluwalia B, Magnusson MK, Öhman L (2017) Mucosal immune system of the gastrointestinal tract: maintaining balance between the good and the bad. Scand J Gastroenterol 52(11):1185–1193

    Article  CAS  Google Scholar 

  • Aliberti J (2016) Immunity and tolerance induced by intestinal mucosal dendritic cells. Mediat Inflamm 2016:3104727

    Article  CAS  Google Scholar 

  • Angus KL, Griffiths GM (2013) Cell polarisation and the immunological synapse. Curr Opin Cell Biol 25:85–91

    Article  CAS  Google Scholar 

  • Banerjee S, Medina-Fatimi A, Nichols R, Tendler D, Michetti M, Simon J, Kelly CP, Monath TP, Michetti P (2002) Safety and efficacy of low dose Escherichia coli enterotoxin adjuvant for urease based oral immunisation against helicobacter pylori in healthy volunteers. Gut 51:634–640

    Article  CAS  Google Scholar 

  • Batista FD, Iber D, Neuberger MS (2001) B cells acquire antigen from target cells after synapse formation. Nature 411:489–494

    Article  CAS  Google Scholar 

  • Berin MC, Shreffler WG (2016) Mechanisms underlying induction of tolerance to foods. Immunol Allergy Clin N Am 36(1):87–102

    Article  Google Scholar 

  • Boyaka PN, Ohmura M, Fujihashi K, Koga T, Yamamoto M, Kweon MN, Takeda Y, Jackson RJ, Kiyono H, Yuki Y, McGhee JR (2003) Chimeras of labile toxin one and cholera toxin retain mucosal adjuvanticity and direct Th cell subsets via their B subunit. J Immunol 170:454–462

    Article  CAS  Google Scholar 

  • Bradney CP, Sempowski GD, Liao HX, Haynes BF, Staats HF (2002) Cytokines as adjuvants for the induction of anti-human immunodeficiency virus peptide immunoglobulin G (IgG) and IgA antibodies in serum and mucosal secretions after nasal immunization. J Virol 76(2):517–524

    Article  CAS  Google Scholar 

  • Brandtzaeg P, Kiyono H, Pabst R, Russel MW (2008) Terminology: nomenclature of mucosa-associated lymphoid tissue. Mucosal Immunol 1:31–37

    Article  CAS  Google Scholar 

  • Buettner M, Bode U (2012) Lymph node dissection-understanding the immunological function of lymph nodes. Clin Exp Immunol 169:205–212

    Article  CAS  Google Scholar 

  • Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M, Hayakawa Y, Vance RE (2011) STING is a direct innate immune sensor of cyclic di-GMP. Nature 478:515–518

    Article  CAS  Google Scholar 

  • Carol M, Lambrechts A, Van Gossum A, Libin M, Goldman M, Mascart-Lemone F (1998) Spontaneous secretion of interferon gamma and interleukin 4 by human intraepithelial and lamina propria gut lymphocytes. Gut 42:643–649

    Article  CAS  Google Scholar 

  • Cha HR, Ko HJ, Kim ED, Chang SY, Seo SU, Cuburu N, Ryu S, Kim S, Kweon MN (2011) Mucosa-associated epithelial chemokine/CCL28 expression in the uterus attracts CCR10+ IgA plasma cells following mucosal vaccination via estrogen control. J Immunol 187:3044–3052

    Article  CAS  Google Scholar 

  • Cheng E, Cárdenas-Freytag L, Clements JD (1999) The role of cAMP in mucosal adjuvanticity of Escherichia coli heat-labile enterotoxin (LT). Vaccine 18:38–49

    Article  CAS  Google Scholar 

  • Clements JD, Norton EB (2018) The mucosal vaccine adjuvant LT(R192G/L211A) or dmLT. mSphere 3(4):pii: e00215-18

    Article  Google Scholar 

  • Clements JD, Hartzog NM, Lyon FL (1988) Adjuvant activity of Escherichia coli heat-labile enterotoxin and effect on the induction of oral tolerance in mice to unrelated protein antigens. Vaccine 6:269–277

    Article  CAS  Google Scholar 

  • Czerkinsky C, Holmgren J (2012) Mucosal delivery routes for optimal immunization: targeting immunity to the right tissues. Curr Top Microbiol Immunol 354:1–18

    CAS  Google Scholar 

  • Daniell H, Rai V, Xiao Y (2018) Cold chain and virus-free oral polio booster vaccine made in lettuce chloroplast confers protection against all three poliovirus serotypes. Plant Biotechnol J 17(7):1357–1368. https://doi.org/10.1111/pbi.13060

    Article  CAS  Google Scholar 

  • Date Y, Ebisawa M, Fukuda S, Shima H, Obata Y, Takahashi D, Kato T, Hanazato M, Nakato G, Williams IR, Hase K, Ohno H (2017) NALT M cells are important for immune induction for the common mucosal immune system. Int Immunol 29(10):471–478

    Article  CAS  Google Scholar 

  • Davitt CJ, McNeela EA, Longet S, Tobias J, Aversa V, McEntee CP, Rosa M, Coulter IS, Holmgren J, Lavelle EC (2016) A novel adjuvanted capsule based strategy for oral vaccination against infectious diarrhoeal pathogens. J Control Release 233:162–173

    Article  CAS  Google Scholar 

  • del Rio ML, Bernhardt G, Rodriguez-Barbosa JI, Forster R (2010) Development and functional specialization of CD103+ dendritic cells. Immunol Rev 234:268–281

    Article  Google Scholar 

  • Dickinson BL, Clements JD (1995) Dissociation of Escherichia coli heat-labile enterotoxin adjuvanticity from ADP-ribosyltransferase activity. Infect Immun 63:1617–1623

    CAS  Google Scholar 

  • Dong C (2008) TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 8:337–348

    Article  CAS  Google Scholar 

  • Duverger A, Jackson RJ, van Ginkel FW, Fischer R, Tafaro A, Leppla SH, Fujihashi K, Kiyono H, McGhee JR, Boyaka PN (2006) Bacillus anthracis edema toxin acts as an adjuvant for mucosal immune responses to nasally administered vaccine antigens. J Immunol 176:1776–1783

    Article  CAS  Google Scholar 

  • Elson CO, Ealding W (1984a) Cholera toxin feeding did not induce oral tolerance in mice and abrogated oral tolerance to an unrelated protein antigen. J Immunol 133:2892–2897

    CAS  Google Scholar 

  • Elson CO, Ealding W (1984b) Generalized systemic and mucosal immunity in mice after mucosal stimulation with cholera toxin. J Immunol 132:2736–2741

    CAS  Google Scholar 

  • Feldstein LR, Mariat S, Gacic-Dobo M, Diallo MS, Conklin LM, Wallace AS (2017) Global routine vaccination coverage, 2016. MMWR Morb Mortal Wkly Rep 66(45):1252–1255

    Article  Google Scholar 

  • Fougeron D, Van Maele L, Songhet P, Cayet D, Hot D, Van Rooijen N, Mollenkopf HJ, Hardt WD, Benecke AG, Sirard JC (2015) Indirect toll-like receptor 5-mediated activation of conventional dendritic cells promotes the mucosal adjuvant activity of flagellin in the respiratory tract. Vaccine 33:3331–3341

    Article  CAS  Google Scholar 

  • Freytag LC, Clements JD (2005) Mucosal adjuvants. Vaccine 23:1804–1813

    Article  CAS  Google Scholar 

  • Fukuiwa T, Sekine S, Kobayashi R, Suzuki H, Kataoka K, Gilbert RS, Kurono Y, Boyaka PN, Krieg AM, McGhee JR, Fujihashi K (2008) A combination of Flt3 ligand cDNA and CpG ODN as nasal adjuvant elicits NALT dendritic cells for prolonged mucosal immunity. Vaccine 26:4849–4859

    Article  CAS  Google Scholar 

  • Fukuyama Y, King JD, Kataoka K, Kobayashi R, Gilbert RS, Hollingshead SK, Briles DE, Fujihashi K (2011) A combination of Flt3 ligand cDNA and CpG oligodeoxynucleotide as nasal adjuvant elicits protective secretory-IgA immunity to Streptococcus pneumoniae in aged mice. J Immunol 186(4):2454–2461

    Article  CAS  Google Scholar 

  • Gallichan WS, Woolstencroft RN, Guarasci T, McCluskie MJ, Davis HL, Rosenthal KL (2001) Intranasal immunization with CpG oligodeoxynucleotides as an adjuvant dramatically increases IgA and protection against herpes simplex virus-2 in the genital tract. J Immunol 166:3451–3457

    Article  CAS  Google Scholar 

  • Gommerman JL, Rojas OL, Fritz JH (2014) Re-thinking the functions of IgA(+) plasma cells. Gut Microbes 5(5):652–662

    Article  Google Scholar 

  • Goodman WA, Pizarro TT (2013) Regulatory cell populations in the intestinal mucosa. Curr Opin Gastroenterol 29:614–620

    Article  Google Scholar 

  • Govea-Alonso DO, Arevalo-Villalobos JI, Márquez-Escobar VA, Vimolmangkang S, Rosales-Mendoza S (2019) An overview of tolerogenic immunotherapies based on plant-made antigens. Expert Opin Biol Ther 20:1–13

    Google Scholar 

  • Hadis U, Wahl B, Schulz O, Hardtke-Wolenski M, Schippers A, Wagner N, Müller W, Sparwasser T, Förster R, Pabst O (2011) Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34(2):237–246

    Article  CAS  Google Scholar 

  • Hagiwara Y, Kawamura YI, Kataoka K, Rahima B, Jackson RJ, Komase K, Dohi T, Boyaka PN, Takeda Y, Kiyono H, McGhee JR, Fujihashi K (2006) A second generation of double mutant cholera toxin adjuvants: enhanced immunity without intracellular trafficking. J Immunol 177:3045–3054

    Article  CAS  Google Scholar 

  • Hajam IA, Dar PA, Shahnawaz I, Jaume JC, Lee JH (2017) Bacterial flagellin-a potent immunomodulatory agent. Exp Mol Med 49(9):e373

    Article  CAS  Google Scholar 

  • Halle S, Halle O, Förster R (2017) Mechanisms and dynamics of T cell-mediated cytotoxicity in vivo. Trends Immunol 38(6):432–443

    Article  CAS  Google Scholar 

  • Holmgren J, Lycke N (2013) Principles of mucosal vaccine strategies. In: Smith PD, Mac Donald TT, Blumberg RS (eds) Principles of mucosal immunology. Garland Science, London, pp 413–428

    Google Scholar 

  • Iho S, Maeyama J, Suzuki F (2005) CpG oligodeoxynucleotides as mucosal adjuvants. Hum Vaccin Immunother 11(3):755–760

    Article  Google Scholar 

  • Illum L (2006) Nasal clearance in health and disease. J Aerosol Med 19:92–99

    Article  CAS  Google Scholar 

  • Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461:788–792

    Article  CAS  Google Scholar 

  • Jahnsen FL, Gran E, Haye R, Brandtzaeg P (2004) Human nasal mucosa contains antigen-presenting cells of strikingly different functional phenotypes. Am J Respir Cell Mol Biol 30:31–37

    Article  CAS  Google Scholar 

  • Johansson-Lindbom B, Agace WW (2007) Generation of gut-homing T cells and their localization to the small intestinal mucosa. Immunol Rev 215:226–242

    Article  CAS  Google Scholar 

  • Kayama H, Takeda K (2016) Functions of innate immune cells and commensal bacteria in gut homeostasis. J Biochem 159(2):141–149

    Article  CAS  Google Scholar 

  • Kayamuro H, Yoshioka Y, Abe Y, Arita S, Katayama K, Nomura T, Yoshikawa T, Kubota-Koketsu R, Ikuta K, Okamoto S, Mori Y, Kunisawa J, Kiyono H, Itoh N, Nagano K, Kamada H, Tsutsumi Y, Tsunoda S (2010) Interleukin-1 family cytokines as mucosal vaccine adjuvants for induction of protective immunity against influenza virus. J Virol 84(24):12703–12712

    Article  CAS  Google Scholar 

  • Khader SA, Gaffen SL, Kolls JK (2009) Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol 2:403–411

    Article  CAS  Google Scholar 

  • Khan T, Heffron CL, High KP, Roberts PC (2014) Membrane-bound IL-12 and IL-23 serve as potent mucosal adjuvants when co-presented on whole inactivated influenza vaccines. Virol J 11:78

    Article  CAS  Google Scholar 

  • Kim YS, Ho SB (2010) Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep 12:319–330

    Article  Google Scholar 

  • Kim DY, Sato A, Fukuyama S, Sagara H, Nagatake T, Kong IG, Goda K, Nochi T, Kunisawa J, Sato S, Yokota Y, Lee CH, Kiyono H (2011) The airway antigen sampling system: respiratory M cells as an alternative gateway for inhaled antigens. J Immunol 186:4253–4262

    Article  CAS  Google Scholar 

  • Kunkel EJ, Butcher EC (2003) Plasma-cell homing. Nature Rev Immunol 3:822–829

    Article  CAS  Google Scholar 

  • Kunkel EJ, Kim CH, Lazarus NH, Vierra MA, Soler D, Bowman EP, Butcher EC (2003) CCR10 expression is a common feature of circulating and mucosal epithelial tissue IgA Ab-secreting cells. J Clin Invest 111(7):1001–1010

    Article  CAS  Google Scholar 

  • Lamichhane A, Azegamia T, Kiyonoa H (2014) The mucosal immune system for vaccine development. Vaccine 32(49):6711–6723

    Article  CAS  Google Scholar 

  • Lazarus NH, Kunkel EJ, Johnston B, Wilson E, Youngman KR, Butcher EC (2003) A common mucosal chemokine (mucosae-associated epithelial chemokine/CCL28) selectively attracts IgA plasmablasts. J Immunol 170(7):3799–3805

    Article  CAS  Google Scholar 

  • Lee H, Ruane D, Law K, Ho Y, Garg A, Rahman A, Esterházy D, Cheong C, Goljo E, Sikora AG, Mucida D, Chen BK, Govindraj S, Breton G, Mehandru S (2015) Phenotype and function of nasal dendritic cells. Mucosal Immunol 8(5):1083–1098

    Article  CAS  Google Scholar 

  • Lin Y, Slight SR, Khader SA (2010) Th17 cytokines and vaccine-induced immunity. Semin Immunopathol 32:79–90

    Article  CAS  Google Scholar 

  • Mann ER, Landy JD, Bernardo D, Peake ST, Hart AL, Al-Hassi HO, Knight SC (2013) Intestinal dendritic cells: their role in intestinal inflammation, manipulation by the gut microbiota and differences between mice and men. Immunol Lett 150:30–40

    Article  CAS  Google Scholar 

  • Mason KL, Huffnagle GB, Noverr MC, Kao JY (2008) Overview of gut immunology. Adv Exp Med Biol 635:1–14

    Article  CAS  Google Scholar 

  • McGowen AL, Hale LP, Shelburne CP, Abraham SN, Staats HF (2009) The mast cell activator compound 48/80 is safe and effective when used as an adjuvant for intradermal immunization with Bacillus anthracis protective antigen. Vaccine 27:3544–3552

    Article  CAS  Google Scholar 

  • McLachlan JB, Shelburne CP, Hart JP, Pizzo SV, Goyal R, Brooking-Dixon R, Staats HF, Abraham SN (2008) Mast cell activators: a new class of highly effective vaccine adjuvants. Nat Med 14:536–541

    Article  CAS  Google Scholar 

  • Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449(7164):819–826

    Article  CAS  Google Scholar 

  • Medzhitov R, Janeway CA Jr (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296(5566):298–300

    Article  CAS  Google Scholar 

  • Mestecky J, Blumberg R, Kiyono H, McGhee JR (2003) Chapter 31. In: Paul WE (ed) Fundamental immunology, 5th edn. Academic, San Diego, pp 965–1020

    Google Scholar 

  • Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136(7):2348–2357

    CAS  Google Scholar 

  • Mowat AM, Agace WW (2014) Regional specialization within the intestinal immune system. Nat Rev Immunol 14:667–685

    Article  CAS  Google Scholar 

  • Mutsch M, Zhou W, Rhodes P, Bopp M, Chen RT, Linder T, Spyr C, Steffen R (2004) Use of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland. N Engl J Med 350:896–903

    Article  CAS  Google Scholar 

  • Newberry RD (2008) Intestinal lymphoid tissues: is variety an asset or a liability? Curr Opin Gastroenterol 24(2):121–128

    Article  Google Scholar 

  • Newsted D, Fallahi F, Golshani A, Azizi A (2015) Advances and challenges in mucosal adjuvant technology. Vaccine 33:2399–2405

    Article  CAS  Google Scholar 

  • Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, Vyas JM, Boes M, Ploegh HL, Fox JG, Littman DR, Reinecker HC (2005) CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307(5707):254–258

    Article  CAS  Google Scholar 

  • Ohno H (2016) Intestinal M cells J Biochem 159(2):151–160

    CAS  Google Scholar 

  • Okada E, Sasaki S, Ishii N, Aoki I, Yasuda T, Nishioka K, Fukushima J, Miyazaki J, Wahren B, Okuda K (1997) Intranasal immunization of a DNA vaccine with IL-12- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-expressing plasmids in liposomes induces strong mucosal and cell-mediated immune responses against HIV-1 antigens. J Immunol 159(7):3638–3647

    CAS  Google Scholar 

  • Őrfi E, Szebeni J (2016) The immune system of the gut and potential adverse effects of oral nanocarriers on its function. Adv Drug Deliv Rev 106(Pt B):402–409

    Article  CAS  Google Scholar 

  • Pabst R (2015) Mucosal vaccination by the intranasal route. Nose-associated lymphoid tissue (NALT)-structure, function and species differences. Vaccine 33(36):4406–4413

    Article  CAS  Google Scholar 

  • Patel A, Patel M, Yang X, Mitra A (2014) Recent advances in protein and peptide drug delivery: a special emphasis on polymeric nanoparticles. Protein Peptide Lett 21(11):1102–1120

    Article  CAS  Google Scholar 

  • Pelka K, De Nardo D (2018) Emerging concepts in innate immunity. Methods Mol Biol 1714:1–18

    Article  CAS  Google Scholar 

  • Peterson RA (2012) Regulatory T-cells: diverse phenotypes integral to immune homeostasis and suppression. Toxicol Pathol 40(2):186–204

    Article  CAS  Google Scholar 

  • Peterson LW, Artis D (2014) Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14:141–153

    Article  CAS  Google Scholar 

  • Pniewski T, Milczarek M, Wojas-Turek J, Pajtasz-Piasecka E, Wietrzyk J, Czyż M (2018) Plant lyophilisate carrying S-HBsAg as an oral booster vaccine against HBV. Vaccine 36(41):6070–6076

    Article  CAS  Google Scholar 

  • Prakken BJ, van der Zee R, Anderton SM, van Kooten PJ, Kuis W, van Eden W (1997) Peptide-induced nasal tolerance for a mycobacterial heat shock protein 60 T cell epitope in rats suppresses both adjuvant arthritis and nonmicrobially induced experimental arthritis. Proc Natl Acad Sci U S A 94:3284–3289

    Article  CAS  Google Scholar 

  • Reboldi A, Cyster JG (2016) Peyer’s patches: organizing B-cell responses at the intestinal frontier. Immunol Rev 271(1):230–245

    Article  CAS  Google Scholar 

  • Rharbaoui F, Bruder D, Vidakovic M, Ebensen T, Buer J, Guzman CA (2005) Characterization of a B220+ lymphoid cell subpopulation with immune modulatory functions in nasal-associated lymphoid tissues. J Immunol 174:1317–1324

    Article  CAS  Google Scholar 

  • Romagnani S (1997) The Th1/Th2 paradigm. Immunol Today 18(6):263–266

    Article  CAS  Google Scholar 

  • Ruane D, Brane L, Reis BS, Cheong C, Poles J, Do Y, Zhu H, Velinzon K, Choi JH, Studt N, Mayer L, Lavelle EC, Steinman RM, Mucida D, Mehandru S (2013) Lung dendritic cells induce migration of protective T cells to the gastrointestinal tract. J Exp Med 210:1871–1888

    Article  CAS  Google Scholar 

  • Rudensky AY, Campbell DY (2006) In vivo sites and cellular mechanisms of T reg cell–mediated suppression. J Exp Med 203:489–492

    Article  CAS  Google Scholar 

  • Schiavi E, Smolinska S, O’Mahony L (2015) Intestinal dendritic cells. Curr Opin Gastroenterol 31(2):98–103

    Article  CAS  Google Scholar 

  • Schulz O, Jaensson E, Persson EK, Liu X, Worbs T, Agace WW, Pabst O (2009) Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J Exp Med 206:3101–3114

    Article  CAS  Google Scholar 

  • Scott CL, Aumeunier AM, Mowat AM (2011) Intestinal CD103+ dendritic cells: master regulators of tolerance? Trends Immunol 32:412–419

    Article  CAS  Google Scholar 

  • Semmrich M, Plantinga M, Svensson-Frej M, Uronen-Hansson H, Gustafsson T, Mowat AM, Yrlid U, Lambrecht BN, Agace WW (2011) Directed antigen targeting in vivo identifies a role for CD103+ dendritic cells in both tolerogenic and immunogenic T-cell responses. Mucosal Immunol 5:150–160

    Article  CAS  Google Scholar 

  • Siewert C, Menning A, Dudda J, Siegmund K, Lauer U, Floess S, Campbell DJ, Hamann A, Huehn J (2007) Induction of organ-selective CD4+ regulatory T cell homing. Eur J Immunol 37:978–989

    Article  CAS  Google Scholar 

  • Soloff AC, Barratt-Boyes SM (2010) Enemy at the gates: dendritic cells and immunity to mucosal pathogens. Cell Res 20:872–885

    Article  CAS  Google Scholar 

  • Spit BJ, Hendricksen EG, Bruijntjes JP, Kuper CF (1989) Nasal lymphoid tissue in the rat. Cell Tissue Res 255:193–198

    Article  CAS  Google Scholar 

  • Théry C, Amigorena S (2001) The cell biology of antigen presentation in dendritic cells. Curr Opin Immunol 13(1):45–51

    Article  Google Scholar 

  • Uematsu S, Fujimoto K, Jang MH, Yang BG, Jung YJ, Nishiyama M, Sato S, Tsujimura T, Yamamoto M, Yokota Y, Kiyono H, Miyasaka M, Ishii KJ, Akira S (2008) Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing toll-like receptor 5. Nat Immunol 9:769–776

    Article  CAS  Google Scholar 

  • Van Maele L, Fougeron D, Janot L, Didierlaurent A, Cayet D, Tabareau J, Rumbo M, Corvo-Chamaillard S, Boulenouar S, Jeffs S, Vande Walle L, Lamkanfi M, Lemoine Y, Erard F, Hot D, Hussell T, Ryffel B, Benecke AG, Sirard JC (2014) Airway structural cells regulate TLR5-mediated mucosal adjuvant activity. Mucosal Immunol 7:489–500

    Article  CAS  Google Scholar 

  • Wang X, Sherman A, Liao G, Leong KW, Daniell H, Terhorst C, Herzog RW (2013) Mechanism of oral tolerance induction to therapeutic proteins. Adv Drug Deliv Rev 65:759–773

    Article  CAS  Google Scholar 

  • Wang M, Gao Z, Zhang Z, Pan L, Zhang Y (2014) Roles of M cells in infection and mucosal vaccines. Hum Vaccin Immunother 10(12):3544–3551

    Article  Google Scholar 

  • Wershil BK, Furuta GT (2008) Gastrointestinal mucosal immunity. J Allergy Clin Immunol 121:S380–S383

    Article  CAS  Google Scholar 

  • Youn HJ, Ko SY, Lee KA, Ko HJ, Lee YS, Fujihashi K, Boyaka PN, Kim SH, Horimoto T, Kweon MN, Kang CY (2007) A single intranasal immunization with inactivated influenza virus and alpha-galactosylceramide induces long-term protective immunity without redirecting antigen to the central nervous system. Vaccine 25:5189–5198

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rosales-Mendoza, S., González-Ortega, O. (2019). The Mucosal Immune System: An Outlook for Nanovaccines Development. In: Nanovaccines. Springer, Cham. https://doi.org/10.1007/978-3-030-31668-6_2

Download citation

Publish with us

Policies and ethics