Skip to main content

Perspectives for the Field of Nanovaccines

  • Chapter
  • First Online:
Nanovaccines

Abstract

Nanomaterials can be used as antigen delivery vehicles with immunostimulatory activity, leading to an improved immune response, which is of relevance in the development of new vaccines termed nanovaccines. These are a promise of modern vaccinology to address some of the challenges in the field that include safety and efficacy enhancement and costs reduction. The previous chapters of this book were focused on individual nanomaterials applied to mucosal vaccine development (namely gold, PLGA, silica, and chitosan nanoparticles; nanotubes, nanogels, liposomes, and virus-like particles). In this chapter, the remaining challenges and possible breakthroughs for this field are identified and discussed. Thus far, the most advanced nanovaccines are those based on VLPs, nanogels, liposomes, and PLGA nanoparticles, being the former approach the one resulting in human and animal vaccines available in the market. Some clinical trials have supported the safety and efficacy of other nanovaccines, such as those based on nanogels and liposomes. Overall, it is required to expand clinical trials and the development of mucosal formulations, as well as to assess novel vaccine designs, such as those comprising biosynthesized nanomaterials or targeting specific cells, and optimize nanomaterials properties to avoid the use of accessory adjuvants. Controversies on toxicity, regulatory issues, and the difficulties to progress into clinical trials and commercialization are discussed. Indeed, we might have effective, safe, convenient, and cheap vaccines through nanotechnology in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbink P, Larocca RA, De La Barrera RA, Bricault CA, Moseley ET, Boyd M, Kirilova M, Li Z, Ng'ang'a D, Nanayakkara O, Nityanandam R, Mercado NB, Borducchi EN, Agarwal A, Brinkman AL, Cabral C, Chandrashekar A, Giglio PB, Jetton D, Jimenez J, Lee BC, Mojta S, Molloy K, Shetty M, Neubauer GH, Stephenson KE, Peron JP, Zanotto PM, Misamore J, Finneyfrock B, Lewis MG, Alter G, Modjarrad K, Jarman RG, Eckels KH, Michael NL, Thomas SJ, Barouch DH (2016) Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys. Science 353(6304):1129–1132

    Article  CAS  Google Scholar 

  • Abdulhaqq SA, Weiner DB (2008) DNA vaccines: developing new strategies to enhance immune responses. Immunol Res 42(1-3):219–232

    Article  CAS  Google Scholar 

  • Agarwal H, Nakara A, Shanmugam VK (2019) Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: a review. Biomed Pharmacother 109:2561–2572

    Article  CAS  Google Scholar 

  • Ahmed S, Annu, Chaudhry SA, Ikram S (2017) A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry. J Photochem Photobiol B 166:272–284

    Article  CAS  Google Scholar 

  • Ahmed R, Omidian Z, Giwa A, Cornwell B, Majety N, Bell DR, Lee S, Zhang H, Michels A, Desiderio S, Sadegh-Nasseri S, Rabb H, Gritsch S, Suva ML, Cahan P, Zhou R, Jie C, Donner T, Hamad ARA (2019) A public BCR present in a unique dual-receptor-expressing lymphocyte from type 1 diabetes patients encodes a potent T cell. Autoantigen Cell 177(6):1583–1599

    Article  CAS  Google Scholar 

  • Akiyoshi K, Deguchi S, Moriguchi N, Yamaguchi S, Sunamoto J (1993) Self-aggregates of hydrophobized polysaccharides in water. Formation and characteristics of nanoparticles. Macromolecules 26(12):3062–3068

    Article  CAS  Google Scholar 

  • Alidori S, Thorek DLJ, Beattie BJ, Ulmert D, Almeida BA, Monette S, Scheinberg DA, McDevitt MR (2017) Carbon nanotubes exhibit fibrillar pharmacology in primates. PLoS One 12(8):e0183902

    Article  CAS  Google Scholar 

  • Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12(7):2313–2333

    Article  CAS  Google Scholar 

  • Alshehri R, Ilyas AM, Hasan A, Arnaout A, Ahmed F, Memic A (2016) Carbon nanotubes in biomedical applications: factors, mechanisms, and remedies of toxicity: miniperspective. J Med Chem 59(18):8149–8167

    Article  CAS  Google Scholar 

  • Asadian-Birjand M, Sousa-Herves A, Steinhilber D, Cuggino JC, Calderon M (2012) Functional nanogels for biomedical applications. Curr Med Chem 19(29):5029–5043

    Article  CAS  Google Scholar 

  • Baek JO, Seo JW, Kwon O, Park SM, Kim CH, Kim IH (2012) Production of human papillomavirus type 33 L1 major capsid protein and virus-like particles from Bacillus subtilis to develop a prophylactic vaccine against cervical cancer. Enzym Microb Technol 50(3):173–180

    Article  CAS  Google Scholar 

  • Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13(1):238–IN27

    Article  CAS  Google Scholar 

  • Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430):605

    Article  CAS  Google Scholar 

  • Bosch S, Botha TL, Jordaan A, Maboeta M, Wepener V (2018) Sublethal effects of ionic and nanogold on the nematode Caenorhabditis elegans. J Toxicol 2018:6218193

    Article  CAS  Google Scholar 

  • Caruso F, Caruso RA, Möhwald H (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282(5391):1111–1114

    Article  CAS  Google Scholar 

  • CDC (1987) Centers for disease control - recommendations of the immunization practices advisory committee update on Hepatitis B prevention. MMWR 36(23):353–336

    Google Scholar 

  • Chackerian B (2007) Virus-like particles: flexible platforms for vaccine development. Expert Rev Vaccines 6(3):381–390

    Article  CAS  Google Scholar 

  • Chen X, Li R, Wong SHD, Wei K, Cui M, Chen H, Jiang Y, Yang B, Zhao P, Xu J, Chen H, Yin C, Lin S, Lee WY, Jing Y, Li Z, Yang Z, Xia J, Chen G, Li G, Bian L (2019) Conformational manipulation of scale-up prepared single-chain polymeric nanogels for multiscale regulation of cells. Nat Commun 10(1):2705

    Article  CAS  Google Scholar 

  • Cho KJ, Shin HJ, Lee JH, Kim KJ, Park SS, Lee Y (2009) The crystal structure of ferritin from Helicobacter pylori reveals unusual conformational changes for iron uptake. J Mol Biol 390:83–98

    Article  CAS  Google Scholar 

  • Choi YS, Lee MY, David AE, Park YS (2014) Nanoparticles for gene delivery: therapeutic and toxic effects. Mol Cell Toxicol 10(1):1–8

    Article  CAS  Google Scholar 

  • Clarke JL, Waheed MT, Lössl AG, Martinussen I, Daniell H (2013) How can plant genetic engineering contribute to cost-effective fish vaccine development for promoting sustainable aquaculture? Plant Mol Biol 83(1-2):33–40

    Article  CAS  Google Scholar 

  • Coller BS, Califf RM (2009) Traversing the valley of death: a guide to assessing prospects for translational success. Sci Transl Med 1(10):10cm9

    Article  Google Scholar 

  • Contopoulos-Ioannidis DG, Alexiou GA, Gouvias TC, Ioannidis JP (2008) Medicine: life cycle of translational research for medical interventions. Science 321:1298–1299

    Article  CAS  Google Scholar 

  • Daniell H, Streatfield SJ, Rybicki EP (2015) Advances in molecular farming: key technologies, scaled up production and lead targets. Plant Biotechnol J 13(8):1011–1012

    Article  Google Scholar 

  • Deng L, Chang TZ, Wang Y, Li S, Wang S, Matsuyama S, Yu G, Compans RW, Li JD, Prausnitz MR, Champion JA, Wang BZ (2018) Heterosubtypic influenza protection elicited by double-layered polypeptide nanoparticles in mice. Proc Natl Acad Sci U S A 115(33):E7758–E7767

    Article  CAS  Google Scholar 

  • FAO (2009) Food and agriculture organization of the United Nations. Global agriculture towards 2050. High level expert forum: how to feed the world in 2050

    Google Scholar 

  • FDA (2004) US Food and Drug Administration Website. Critical path initiative web page. Challenges and opportunities. Available at http://www.fda.gov/ScienceResearch/SpecialTopics/CriticalPathInitiative/CriticalPathOpportunitiesReports/ucm077262.htm

  • FDA (2015) Liposomes drug products. Retrieved from http://www.fda.gov/downloads/%20Drugs/GuidanceComplianceRegulatoryInformation/%20Guidances/ucm070570.pdf

  • FDA (2016) Inactive ingredient search for approved drug products. Retrieved from http://www.accessdata.fda.gov/scripts/cder/iig/index.cfm

  • Feng JL, Qi JR, Yin SW, Wang JM, Guo J, Weng JY, Liu QR, Yang XQ (2015) Fabrication and characterization of stable soy β-conglycinin-dextran core-shell nanogels prepared via a self-assembly approach at the isoelectric point. J Agric Food Chem 63(26):6075–6083

    Article  CAS  Google Scholar 

  • Gheibi-Hayat SM, Darroudi M (2019) Nanovaccine: a novel approach in immunization. J Cell Physiol 234(8):12530–12536

    Article  CAS  Google Scholar 

  • Gregoriadis G (1973) Drug entrapment in liposomes. FEBS Lett 36(3):292–296

    Article  CAS  Google Scholar 

  • Grenha A (2012) Chitosan nanoparticles: a survey of preparation methods. J Drug Target 20(4):291–300

    Article  CAS  Google Scholar 

  • Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37(9):1783–1791

    Article  CAS  Google Scholar 

  • Hassanen EI, Khalaf AA, Tohamy AF, Mohammed ER, Farroh KY (2019) Toxicopathological and immunological studies on different concentrations of chitosan-coated silver nanoparticles in rats. Int J Nanomedicine 14:4723–4739

    Article  Google Scholar 

  • He L, Liang H, Lin L, Shah BR, Li Y, Chen Y, Li B (2015) Green-step assembly of low density lipoprotein/sodium carboxymethyl cellulose nanogels for facile loading and pH-dependent release of doxorubicin. Colloids Surf B Biointerfaces 126:288–296

    Article  CAS  Google Scholar 

  • Hervé PL, Raliou M, Bourdieu C, Dubuquoy C, Petit-Camurdan A, Bertho N, Eléouët JF, Chevalier C, Riffault S (2014) A novel subnucleocapsid nanoplatform for mucosal vaccination against influenza virus that targets the ectodomain of matrix protein 2. J Virol 88(1):325–338

    Article  CAS  Google Scholar 

  • Hope MJ, Bally MB, Mayer LD, Janoff AS, Cullis PR (1986) Generation of multilamellar and unilamellar phospholipid vesicles. Chem Phys Lipids 40(2-4):89–107

    Article  Google Scholar 

  • Hulkoti NI, Taranath TC (2014) Biosynthesis of nanoparticles using microbes- a review. Colloids Surf B Biointerfaces 121:474–483

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56

    Article  CAS  Google Scholar 

  • Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603

    Article  CAS  Google Scholar 

  • Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1(3):297

    Article  CAS  Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001) Seeding growth for size control of 5− 40 nm diameter gold nanoparticles. Langmuir 17(22):6782–6786

    Article  CAS  Google Scholar 

  • Jardine J, Julien JP, Menis S, Ota T, Kalyuzhniy O, McGuire A (2013) Rational HIV immunogen design to target specific germline B cell receptors. Science 340:711–716

    Article  CAS  Google Scholar 

  • Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym 82(2):227–232

    Article  CAS  Google Scholar 

  • Joselevich E, Dai H, Liu J, Hata K, Windle AH (2007) Carbon nanotube synthesis and organization. In: Carbon nanotubes. Springer, Berlin, pp 101–165

    Chapter  Google Scholar 

  • Kalra J, Bally MB, Uchegbu IF, Schätzlein GA, Cheng PW, Lalatsa A (2013) Fundamentals of pharmaceutical nanoscience. Springer, New York, pp 27–63

    Book  Google Scholar 

  • Karch CP, Bai H, Torres OB, Tucker CA, Michael NL, Matyas GR, Rolland M, Burkhard P, Beck Z (2019) Design and characterization of a self-assembling protein nanoparticle displaying HIV-1 Env V1V2 loop in a native-like trimeric conformation as vaccine antigen. Nanomedicine 16:206–216

    Article  CAS  Google Scholar 

  • Khan AU, Khan M, Malik N, Cho MH, Khan MM (2019) Recent progress of algae and blue-green algae-assisted synthesis of gold nanoparticles for various applications. Bioprocess Biosyst Eng 42(1):1–15

    Article  CAS  Google Scholar 

  • Khanna P, Kaur A, Goyal D (2019) Algae-based metallic nanoparticles: synthesis, characterization and applications. J Microbiol Methods 163:105656

    Article  CAS  Google Scholar 

  • Kim IY, Joachim E, Choi H, Kim K (2015) Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine 11(6):1407–1416

    Article  CAS  Google Scholar 

  • Klug B, Reinhardt J, Robertson J (2012) Current status of regulations for DNA vaccines. In: Thalhamer J, Weiss R, Scheiblhofer S (eds) Gene vaccines. Springer, New York, pp 285–295

    Chapter  Google Scholar 

  • Korupalli C, Pan WY, Yeh CY, Chen PM, Mi FL, Tsai HW, Chang Y, Wei HJ, Sung HW (2019) Single-injecting, bioinspired nanocomposite hydrogel that can recruit host immune cells in situ to elicit potent and long-lasting humoral immune responses. Biomaterials 216:119268

    Article  CAS  Google Scholar 

  • Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710

    Article  CAS  Google Scholar 

  • Kumar S, Rani R, Dilbaghi N, Tankeshwar K, Kim KH (2017) Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem Soc Rev 46(1):158–196

    Article  CAS  Google Scholar 

  • Kutzler MA, Weiner DB (2008) DNA vaccines: ready for prime time? Nat Rev Genet 9(10):776–788

    Article  CAS  Google Scholar 

  • Li L, Petrovsky N (2016) Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev Vaccines 15(3):313–329

    Article  CAS  Google Scholar 

  • Li F, Nie W, Zhang F, Lu G, Lv C, Lv Y, Bao W, Zhang L, Wang S, Gao X, Wei W, Xie HY (2019) Engineering magnetosomes for high-performance cancer vaccination. ACS Cent Sci 5(5):796–807

    CAS  Google Scholar 

  • Liang R, Xie J, Li J, Wang K, Liu L, Gao Y, Hussain M, Shen G, Zhu J, Tao J (2017) Liposomes-coated gold nanocages with antigens and adjuvants targeted delivery to dendritic cells for enhancing antitumor immune response. Biomaterials 149:41–50

    Article  CAS  Google Scholar 

  • Liberman A, Mendez N, Trogler WC, Kummel AC (2014) Synthesis and surface functionalization of silica nanoparticles for nanomedicine. Surf Sci Rep 69(2-3):132–158

    Article  CAS  Google Scholar 

  • Liu MA (2011) DNA vaccines: an historical perspective and view to the future. Immunol Rev 239(1):62–84

    Article  CAS  Google Scholar 

  • Lou XW, Archer LA, Yang Z (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20(21):3987–4019

    Article  CAS  Google Scholar 

  • Luo M, Samandi LZ, Wang Z, Chen ZJ, Gao J (2017) Synthetic nanovaccines for immunotherapy. J Control Release 263:200–210

    Article  CAS  Google Scholar 

  • MacDonald KN, Piret JM, Levings MK (2019) Methods to manufacture regulatory T cells for cell therapy. Clin Exp Immunol 197(1):52–63

    CAS  Google Scholar 

  • Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3(3):1377–1397

    Article  CAS  Google Scholar 

  • Mohammadpour R, Yazdimamaghani M, Cheney DL, Jedrzkiewicz J, Ghandehari H (2019) Subchronic toxicity of silica nanoparticles as a function of size and porosity. J Control Release 304:216–232

    Article  CAS  Google Scholar 

  • Mosquera MJ, Kim S, Zhou H, Jing TT, Luna M, Guss JD, Reddy P, Lai K, Leifer CA, Brito IL, Hernandez CJ, Singh A (2019) Immunomodulatory nanogels overcome restricted immunity in a murine model of gut microbiome-mediated metabolic syndrome. Sci Adv 5(3):eaav9788

    Article  CAS  Google Scholar 

  • Mukherjee A, Waters AK, Kalyan P, Achrol AS, Kesari S, Yenugonda VM (2019) Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives. Int J Nanomedicine 14:1937–1952

    Article  CAS  Google Scholar 

  • Nagpal K, Singh SK, Mishra DN (2010) Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull 58(11):1423–1430

    Article  CAS  Google Scholar 

  • Nait Mohamed FA, Nouri A, Laraba-Djebari F (2017) Reactogenicity and safety assessment of an attenuated nanovaccine against scorpion envenomation: preclinical study. Vaccine 35:6657–6663

    Article  CAS  Google Scholar 

  • Nakayama Y, Aruga A (2015) Comparison of current regulatory status for gene-based vaccines in the U.S., Europe and Japan. Vaccine 3(1):186–202

    Article  CAS  Google Scholar 

  • Nguyen HT, Shen H (2016) The effect of PEGylation on the stimulation of IL-1β by gold (Au) nanoshell/silica core nanoparticles. J Mater Chem B 4(9):1650–1659

    Article  CAS  Google Scholar 

  • Nimesh S (2013) Poly(D,L-lactide-co-glycolide)-based nanoparticles. In: Nimesh S (ed) Woodhead Publishing series in biomedicine, gene therapy. Woodhead Publishing, Sawston, pp 309–329

    Google Scholar 

  • Nozawa K, Gailhanou H, Raison L, Panizza P, Ushiki H, Sellier E, Delville JP, Delville MH (2005) Smart control of monodisperse Stöber silica particles: effect of reactant addition rate on growth process. Langmuir 21(4):1516–1523

    Article  CAS  Google Scholar 

  • Park SK, Do Kim K, Kim HT (2002) Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles. Colloids and Surf A 197(1-3):7–17

    Article  CAS  Google Scholar 

  • Peppas NA (2010) Biomedical applications of hydrogels handbook. Springer, New York

    Google Scholar 

  • Pniewski T, Milczarek M, Wojas-Turek J, Pajtasz-Piasecka E, Wietrzyk J, Czyż M (2018) Plant lyophilisate carrying S-HBsAg as an oral booster vaccine against HBV. Vaccine 36(41):6070–6076

    Article  CAS  Google Scholar 

  • Quach QH, Ang SK, Chu JJ, Kah JCY (2018) Size-dependent neutralizing activity of gold nanoparticle-based subunit vaccine against denguevirus. Acta Biomater 78:224–235

    Article  CAS  Google Scholar 

  • Raman S, Machaidze G, Lustig A, Aebi U, Burkhard P (2006) Structure-based design of peptides that self-assemble into regular polyhedral nanoparticles. Nanomedicine 2:95–102

    Article  CAS  Google Scholar 

  • Riaz MK, Riaz MA, Zhang X, Lin C, Wong KH, Chen X, Zhang G, Lu A, Yang Z (2018) Surface functionalization and targeting strategies of liposomes in solid tumor therapy: a review. Int J Mol Sci 19(1):E195

    Article  CAS  Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632

    Article  CAS  Google Scholar 

  • Rodrigues TC, Oliveira MLS, Soares-Schanoski A, Chavez-Rico SL, Figueiredo DB, Gonçalves VM, Ferreira DM, Kunda NK, Saleem IY, Miyaji EN (2018) Mucosal immunization with PspA (Pneumococcal surface protein A)-adsorbed nanoparticles targeting the lungs for protection against pneumococcal infection. PLoS One 13(1):e0191692

    Article  CAS  Google Scholar 

  • Rohovie MJ, Nagasawa M, Swartz JR (2017) Virus-like particles: Next-generation nanoparticles for targeted therapeutic delivery. Bioeng Transl Med 2(1):43–57

    Article  CAS  Google Scholar 

  • Rosales-Mendoza S (2013) Future directions for the development of Chlamydomonas-based vaccines. Expert Rev Vaccines 12(9):1011–1019

    Article  CAS  Google Scholar 

  • Saha PP, Bhowmik T, Dasgupta AK, Gomes A (2014) In vivo and in vitro toxicity of nanogold conjugated snake venom protein toxin GNP-NKCT1. Toxicol Rep 1:74–84

    Article  CAS  Google Scholar 

  • Sahana DK, Mittal G, Bhardwaj V, Kumar MR (2008) PLGA nanoparticles for oral delivery of hydrophobic drugs: influence of organic solvent on nanoparticle formation and release behavior in vitro and in vivo using estradiol as a model drug. J Pharm Sci 97(4):1530–1542

    Article  CAS  Google Scholar 

  • Sardar R, Shumaker-Parry JS (2011) Spectroscopic and microscopic investigation of gold nanoparticle formation: ligand and temperature effects on rate and particle size. J Am Chem Soc 133(21):8179–8190

    Article  CAS  Google Scholar 

  • Sasaki Y, Akiyoshi K (2010) Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. Chem Rec 10(6):366–376

    CAS  Google Scholar 

  • Sharma S, Parmar A, Kori S, Sandhir R (2016) PLGA-based nanoparticles: a new paradigm in biomedical applications. TrAC 80:30–40

    CAS  Google Scholar 

  • Slusher BS, Conn PJ, Frye S, Glicksman M, Arkin M (2013) Bringing together the academic drug discovery community. Nat Rev Drug Discov 12:811–812

    Article  CAS  Google Scholar 

  • Stamler JS, Taber RL, Califf RM (2003) Translation of academic discovery into societal benefit: proposal for a balanced approach. Am J Med 115:596–599

    Article  Google Scholar 

  • Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69

    Article  Google Scholar 

  • Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24(12):1504–1534

    Article  CAS  Google Scholar 

  • Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145

    Article  CAS  Google Scholar 

  • Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  • Wang XD, Shen ZX, Sang T, Cheng XB, Li MF, Chen LY, Wang ZS (2010) Preparation of spherical silica particles by Stöber process with high concentration of tetra-ethyl-orthosilicate. J Colloid Interface Sci 341(1):23–29

    Article  CAS  Google Scholar 

  • Wang K, Wen S, He L, Li A, Li Y, Dong H, Li W, Ren T, Shi D, Li Y (2018) “Minimalist” nanovaccine constituted from near whole antigen for cancer immunotherapy. ACS Nano 12(7):6398–6409

    Article  CAS  Google Scholar 

  • Wang Z, Xu L, Yu H, Lv P, Lei Z, Zeng Y, Liu G, Cheng T (2019) Ferritin nanocage-based antigen delivery nanoplatforms: epitope engineering for peptide vaccine design. Biomater Sci 7(5):1794–1800

    Article  CAS  Google Scholar 

  • WHO (2014) A brief guide to emerging infectious diseases and zoonoses. World Health Organization Regional Office for South-East Asia, New Delhi

    Google Scholar 

  • Yan Y, Wang X, Lou P, Hu Z, Qu P, Li D, Li Q, Xu Y, Niu J, He Y, Zhong J, Huang Z (2019) A nanoparticle-based HCV vaccine with enhanced potency. J Infect Dis. https://doi.org/10.1093/infdis/jiz228

  • Yeh YC, Creran B, Rotello VM (2012) Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4(6):1871–1880

    Article  CAS  Google Scholar 

  • Yi LI, Weifan Y, Huan Y (2019) Chimeric antigen receptor-engineered regulatory T lymphocytes: promise for immunotherapy of autoimmune disease. Cytotherapy 3249(19):30750–30759

    Google Scholar 

  • Yildiz I, Shukla S, Steinmetz NF (2011) Applications of viral nanoparticles in medicine. Curr Opin Biotechnol 22(6):901–908

    Article  CAS  Google Scholar 

  • Yu HW (2016) Bridging the translational gap: collaborative drug development and dispelling the stigma of commercialization. Drug Discov Today 21(2):299–305

    Article  Google Scholar 

  • Zhai L, Tumban E (2016) Gardasil-9: a global survey of projected efficacy. Antivir Res 130:101–109

    Article  CAS  Google Scholar 

  • Zhang Q, Wu J, Gao L, Liu T, Zhong W, Sui G, Zheng G, Fang W, Yang X (2016) Dispersion stability of functionalized MWCNT in the epoxy–amine system and its effects on mechanical and interfacial properties of carbon fiber composites. Mater Des 94:392–402

    Article  CAS  Google Scholar 

  • Zhao K, Rong G, Hao Y, Yu L, Kang H, Wang X, Wang X, Jin Z, Ren Z, Li Z (2016) IgA response and protection following nasal vaccination of chickens with Newcastle disease virus DNA vaccine nanoencapsulated with Ag@SiO2 hollow nanoparticles. Sci Rep 6:25720

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rosales-Mendoza, S., González-Ortega, O. (2019). Perspectives for the Field of Nanovaccines. In: Nanovaccines. Springer, Cham. https://doi.org/10.1007/978-3-030-31668-6_11

Download citation

Publish with us

Policies and ethics