Skip to main content

Neuromuscular Factors Related to Hamstring Muscle Function, Performance and Injury

  • Chapter
  • First Online:

Abstract

Hamstring function is influenced by a number of neural, architectural and morphological factors, and the adaptability of these characteristics has important implications for optimizing performance and reducing injury risk. High rates of maximal or near-maximal hamstring force development are required to generate peak horizontal velocities during running, and this is largely determined by the extent to which these muscles can be voluntarily activated. Greater eccentric hamstring strength also correlates with better acceleration capacity and likely improves the ability to decelerate the lower limb during the presumably injurious terminal swing phase of high-speed running. The intra- and intermuscular coordination of the hamstrings appears to influence both hamstring muscle fatiguability and the risk of muscle strain injury. Muscle volume and architectural features such as fascicle length and pennation angle also influence hamstring function, and these vary considerably between hamstring muscles, between individuals and with training status. The adaptability of these features has been explored to a significant extent in recent times, and careful exercise selection allows selective targeting of individual hamstring muscles or muscle segments and this appears to influence the pattern of chronic adaptations such as muscle hypertrophy. Short fascicles within the often-injured long head of biceps femoris may predispose athletes to strain injury but these appear to respond in a contraction-mode-specific manner; lengthening after eccentric training and shortening after concentric training of 4 or more weeks. Conventional training with eccentric and concentric phases in each repetition can also lengthen fascicles, possibly in an excursion (muscle length)-dependent manner. A large biceps femoris muscle to proximal aponeurosis width ratio has been proposed as a potential risk factor for hamstring strain injury, although this is only supported by biomechanical modelling at the time of writing. High levels of anterior pelvic tilt and lateral trunk flexion during sprint running may also predispose athletes to hamstring strain injury, although the quantity of evidence for this is small at the moment. At present, the optimal methods for altering coordination and running technique are not known.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wisloff U, Castagna C, Helgerud J, Jones R, Hoff J. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br J Sports Med. 2004;38(3):285–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Comfort P, Bullock N, Pearson SJ. A comparison of maximal squat strength and 5-, 10-, and 20-meter sprint times, in athletes and recreationally trained men. J Strength Cond Res. 2012;26(4):937–40.

    Article  PubMed  Google Scholar 

  3. McBride JM, Blow D, Kirby TJ, Haines TL, Dayne AM, Triplett NT. Relationship between maximal squat strength and five, ten, and forty yard sprint times. J Strength Cond Res. 2009;23(6):1633–6.

    Article  PubMed  Google Scholar 

  4. Tillin NA, Pain MT, Folland J. Explosive force production during isometric squats correlates with athletic performance in rugby union players. J Sports Sci. 2013;31(1):66–76.

    Article  PubMed  Google Scholar 

  5. Ishoi L, Aagaard P, Nielsen MF, Thornton KB, Krommes KK, Holmich P, et al. The influence of hamstring muscle peak torque and rate of torque development for sprinting performance in football players: a cross-sectional study. Int J Sports Physiol Perform. 2018;14:665–73.

    Article  Google Scholar 

  6. Markovic G, Sarabon N, Boban F, Zoric I, Jelcic M, Sos K, et al. Nordic hamstring strength of highly trained youth football players and its relation to sprint performance. J Strength Cond Res. 2018. https://doi.org/10.1519/JSC.0000000000002800.

    Article  PubMed  Google Scholar 

  7. Ishoi L, Holmich P, Aagaard P, Thorborg K, Bandholm T, Serner A. Effects of the nordic hamstring exercise on sprint capacity in male football players: a randomized controlled trial. J Sports Sci. 2018;36(14):1663–72.

    Article  PubMed  Google Scholar 

  8. Krommes K, Petersen J, Nielsen MB, Aagaard P, Holmich P, Thorborg K. Sprint and jump performance in elite male soccer players following a 10-week nordic hamstring exercise protocol: a randomised pilot study. BMC Res Notes. 2017;10(1):669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Askling C, Karlsson J, Thorstensson A. Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand J Med Sci Sports. 2003;13(4):244–50.

    Article  CAS  PubMed  Google Scholar 

  10. Mendiguchia J, Martinez-Ruiz E, Morin JB, Samozino P, Edouard P, Alcaraz PE, et al. Effects of hamstring-emphasized neuromuscular training on strength and sprinting mechanics in football players. Scand J Med Sci Sports. 2015;25(6):e621–9.

    Article  CAS  PubMed  Google Scholar 

  11. Swanson SC, Caldwell GE. An integrated biomechanical analysis of high speed incline and level treadmill running. Med Sci Sports Exerc. 2000;32(6):1146–55.

    Article  CAS  PubMed  Google Scholar 

  12. Simonsen EB, Thomsen L, Klausen K. Activity of mono- and biarticular leg muscles during sprint running. Eur J Appl Physiol Occup Physiol. 1985;54(5):524–32.

    Article  CAS  PubMed  Google Scholar 

  13. Morin JB, Gimenez P, Edouard P, Arnal P, Jimenez-Reyes P, Samozino P, et al. Sprint acceleration mechanics: the major role of hamstrings in horizontal force production. Front Physiol. 2015;6:404.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Aagaard P. Spinal and supraspinal control of motor function during maximal eccentric muscle contraction: effects of resistance training. J Sport Health Sci. 2018;7(3):282–93.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Aagaard P, Simonsen EB, Andersen JL, Magnusson SP, Halkjaer-Kristensen J, Dyhre-Poulsen P. Neural inhibition during maximal eccentric and concentric quadriceps contraction: effects of resistance training. J Appl Physiol. 2000;89(6):2249–57.

    Article  CAS  PubMed  Google Scholar 

  16. Andersen LL, Andersen JL, Magnusson SP, Aagaard P. Neuromuscular adaptations to detraining following resistance training in previously untrained subjects. Eur J Appl Physiol. 2005;93(5–6):511–8.

    Article  PubMed  Google Scholar 

  17. Opar DA, Williams MD, Timmins RG, Dear NM, Shield AJ. Knee flexor strength and bicep femoris electromyographical activity is lower in previously strained hamstrings. J Electromyogr Kinesiol. 2013;23(3):696–703.

    Article  PubMed  Google Scholar 

  18. Opar DA, Williams MD, Shield AJ. Hamstring strain injuries: factors that lead to injury and re-injury. Sports Med. 2012;42(3):209–26.

    Article  PubMed  Google Scholar 

  19. Fyfe JJ, Opar DA, Williams MD, Shield AJ. The role of neuromuscular inhibition in hamstring strain injury recurrence. J Electromyogr Kinesiol. 2013;23(3):523–30.

    Article  PubMed  Google Scholar 

  20. Bourne MN, Timmins RG, Opar DA, Pizzari T, Ruddy RD, Sims C, et al. An evidence-based framework for strengthening exercises to prevent hamstring injury. Sports Med. 2018;48(2):251–67.

    Article  PubMed  Google Scholar 

  21. Green B, Bourne MN, Pizzari T. Isokinetic strength assessment offers limited predictive validity for detecting risk of future hamstring strain in sport: a systematic review and meta-analysis. Br J Sports Med. 2018;52(5):329–36.

    Article  PubMed  Google Scholar 

  22. Shield AJ, Bourne MN. Hamstring injury prevention practices in elite sport: evidence for eccentric strength vs. lumbo-pelvic training. Sports Med. 2018;48(3):513–24.

    Article  PubMed  Google Scholar 

  23. van Dyk N, Bahr R, Whiteley R, Tol JL, Kumar BD, Hamilton B, et al. Hamstring and quadriceps isokinetic strength deficits are weak risk factors for hamstring strain injuries: a 4-year cohort study. Am J Sports Med. 2016;44(7):1789–95.

    Article  PubMed  Google Scholar 

  24. Opar DA, Williams MD, Timmins RG, Hickey J, Duhig SJ, Shield AJ. Eccentric hamstring strength and hamstring injury risk in australian footballers. Med Sci Sports Exerc. 2014;47(4):857–65.

    Article  Google Scholar 

  25. Timmins R, Bourne M, Shield A, Williams M, Lorenzon C, Opar D. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): a prospective cohort study. Br J Sports Med. 2016;50(24):1524–35.

    Article  PubMed  Google Scholar 

  26. Bourne M, Opar DA, Williams M, Shield A. Eccentric knee-flexor strength and hamstring injury risk in rugby union: a prospective study. Am J Sports Med. 2015;43(11):2663–70.

    Article  PubMed  Google Scholar 

  27. van Dyk N, Bahr R, Burnett AF, Whiteley R, Bakken A, Mosler A, et al. A comprehensive strength testing protocol offers no clinical value in predicting risk of hamstring injury: a prospective cohort study of 413 professional football players. Br J Sport Med. 2017;51(23):1695.

    Article  Google Scholar 

  28. Greig M. The influence of soccer-specific fatigue on peak isokinetic torque production of the knee flexors and extensors. Am J Sport Med. 2008;36(7):1403–9.

    Article  Google Scholar 

  29. Small K, McNaughton L, Greig M, Lovell R. The effects of multidirectional soccer-specific fatigue on markers of hamstring injury risk. J Sci Med Sport. 2010;13(1):120–5.

    Article  CAS  PubMed  Google Scholar 

  30. Small K, McNaughton LR, Greig M, Lohkamp M, Lovell R. Soccer fatigue, sprinting and hamstring injury risk. Int J Sports Med. 2009;30:573–8.

    Article  CAS  PubMed  Google Scholar 

  31. Timmins RG, Opar DA, Williams MD, Schache AG, Dear NM, Shield AJ. Reduced biceps femoris myoelectrical activity influences eccentric knee flexor weakness after repeat sprint running. Scand J Med Sci Sports. 2014;24(4):e299–305.

    Article  CAS  PubMed  Google Scholar 

  32. Duhig SJ, Williams MD, Minett GM, Opar D, Shield AJ. Drop punt kicking induces eccentric knee flexor weakness associated with reductions in hamstring electromyographic activity. J Sci Med Sport. 2017;20(6):595–9.

    Article  PubMed  Google Scholar 

  33. Garrett W, Safran M, Seaber AV, Glisson RR, Ribbeck B. Biomechanical comparison of stimulated and nonstimulated skeletal muscle pulled to failure. Am J Sport Med. 1987;15(6):448–54.

    Article  Google Scholar 

  34. Lord C, Ma'ayah F, Blazevich AJ. Change in knee flexor torque after fatiguing exercise identifies previous hamstring injury in football players. Scand J Med Sci Sports. 2018;28(3):1235–43.

    Article  CAS  PubMed  Google Scholar 

  35. Freckleton G, Cook J, Pizzari T. The predictive validity of a single leg bridge test for hamstring injuries in Australian Rules Football Players. Br J Sports Med. 2014;48(8):713–7.

    Article  PubMed  Google Scholar 

  36. Schuermans J, Van Tiggelen D, Danneels L, Witvrouw E. Susceptibility to hamstring injuries in soccer: a prospective study using muscle functional magnetic resonance imaging. Am J Sports Med. 2016;44(5):1276–85.

    Article  PubMed  Google Scholar 

  37. Delahunt E, McGroarty M, De Vito G, Ditroilo M. Nordic hamstring exercise training alters knee joint kinematics and hamstring activation patterns in young men. Eur J Appl Physiol. 2016;116(4):663–72.

    Article  PubMed  Google Scholar 

  38. Schuermans J, Van Tiggelen D, Danneels L, Witvrouw E. Biceps femoris and semitendinosus-teammates or competitors? New insights into hamstring injury mechanisms in male football players: a muscle functional MRI study. Br J Sports Med. 2014;48(22):1599–606.

    Article  PubMed  Google Scholar 

  39. Schuermans J, Danneels L, Van Tiggelen D, Palmans T, Witvrouw E. Proximal neuromuscular control protects against hamstring injuries in male soccer players: a prospective study with electromyography time-series analysis during maximal sprinting. Am J Sports Med. 2017;45(6):1315–25.

    Article  PubMed  Google Scholar 

  40. Schuermans J, Van Tiggelen D, Palmans T, Danneels L, Witvrouw E. Deviating running kinematics and hamstring injury susceptibility in male soccer players: cause or consequence? Gait Posture. 2017;57:270–7.

    Article  PubMed  Google Scholar 

  41. Schuermans J, Van Tiggelen D, Witvrouw E. Prone hip extension muscle recruitment is associated with hamstring injury risk in amateur soccer. Int J Sports Med. 2017;38(9):696–706.

    Article  PubMed  Google Scholar 

  42. Avrillon S, Guilhem G, Barthelemy A, Hug F. Coordination of hamstrings is individual-specific and is related to motor performance. J Appl Physiol (1985). 2018;125:1069–79.

    Article  Google Scholar 

  43. Bourne MN, Opar DA, Al Najjar A, Shield AJ. Impact of exercise selection on hamstring muscle activation. Br J Sports Med. 2017;51(13):1021–8.

    Article  PubMed  Google Scholar 

  44. Petersen J, Thorborg K, Nielsen MB, Budtz-Jørgensen E, Hölmich P. Preventive effect of eccentric training on acute hamstring injuries in men’s soccer a cluster-randomized controlled trial. Am J Sports Med. 2011;39(11):2296–303.

    Article  PubMed  Google Scholar 

  45. van der Horst N, Smits DW, Petersen J, Goedhart EA, Backx FJ. The preventive effect of the nordic hamstring exercise on hamstring injuries in amateur soccer players: a randomized controlled trial. Am J Sports Med. 2015;43(6):1316–23.

    Article  PubMed  Google Scholar 

  46. Chumanov ES, Heiderscheit BC, Thelen DG. The effect of speed and influence of individual muscles on hamstring mechanics during the swing phase of sprinting. J Biomech. 2007;40(16):3555–62.

    Article  PubMed  Google Scholar 

  47. Lieber RL, Friden J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve. 2000;23(11):1647–66.

    Article  CAS  PubMed  Google Scholar 

  48. Blazevich AJ, Sharp NC. Understanding muscle architectural adaptation: macro- and micro-level research. Cells Tissues Organs. 2005;181(1):1–10.

    Article  PubMed  Google Scholar 

  49. Ward SR, Eng CM, Smallwood LH, Lieber RL. Are current measurements of lower extremity muscle architecture accurate? Clin Orthop Relat Res. 2009;467(4):1074–82.

    Article  PubMed  Google Scholar 

  50. Woodley SJ, Mercer SR. Hamstring muscles: architecture and innervation. Cells Tissues Organs. 2005;179(3):125–41.

    Article  PubMed  Google Scholar 

  51. Wickiewicz TL, Roy RR, Powell PL, Edgerton VR. Muscle architecture of the human lower limb. Clin Orthop Relat Res. 1983;179:275-83.

    Article  Google Scholar 

  52. Bourne MN, Timmins RG, Williams MD, Opar DA, Al Najjar A, Kerr GK, Shield AJ. Impact of the nordic hamstring and hip extension exercises on hamstring architecture and morphology: implications for injury prevention. Br J Sports Med. 2017;51(5):469–77.

    Article  PubMed  Google Scholar 

  53. Handsfield GG, Knaus KR, Fiorentino NM, Meyer CH, Hart JM, Blemker SS. Adding muscle where you need it: non-uniform hypertrophy patterns in elite sprinters. Scand J Med Sci Sports. 2017;27(10):1050–60.

    Article  CAS  PubMed  Google Scholar 

  54. Seymore KD, Domire ZJ, DeVita P, Rider PM, Kulas AS. The effect of nordic hamstring strength training on muscle architecture, stiffness, and strength. Eur J Appl Physiol. 2017;117(5):943–53.

    Article  CAS  PubMed  Google Scholar 

  55. Timmins RG, Ruddy JD, Presland J, Maniar N, Shield AJ, Williams MD, et al. Architectural changes of the biceps femoris after concentric or eccentric training. Med Sci Sports Exerc. 2016;48(3):499–508.

    Article  PubMed  Google Scholar 

  56. Handsfield GG, Meyer CH, Hart JM, Abel MF, Blemker SS. Relationships of 35 lower limb muscles to height and body mass quantified using MRI. J Biomech. 2014;47(3):631–8.

    Article  PubMed  Google Scholar 

  57. Abe T, Kumagai K, Brechue WF. Fascicle length of leg muscles is greater in sprinters than distance runners. Med Sci Sports Exerc. 2000;32(6):1125–9.

    Article  CAS  PubMed  Google Scholar 

  58. Kumagai K, Abe T, Brechue WF, Ryushi T, Takano S, Mizuno M. Sprint performance is related to muscle fascicle length in male 100-m sprinters. J Appl Physiol (1985). 2000;88(3):811–6.

    Article  CAS  Google Scholar 

  59. Herzog W, Read L. Lines of action and moment arms of the major force-carrying structures crossing the human knee joint. J Anat. 1993;182(Pt 2):213.

    PubMed  PubMed Central  Google Scholar 

  60. Spoor CW, van Leeuwen JL, Meskers CG, Titulaer AF, Huson A. Estimation of instantaneous moment arms of lower-leg muscles. J Biomech. 1990;23(12):1247–59.

    Article  CAS  PubMed  Google Scholar 

  61. Dostal WF, Soderberg GL, Andrews JG. Actions of hip muscles. Phys Ther. 1986;66(3):351–61.

    Article  CAS  PubMed  Google Scholar 

  62. Nemeth G, Ohlsen H. In vivo moment arm lengths for hip extensor muscles at different angles of hip flexion. J Biomech. 1985;18(2):129–40.

    Article  CAS  PubMed  Google Scholar 

  63. Abe T, Fukashiro S, Harada Y, Kawamoto K. Relationship between sprint performance and muscle fascicle length in female sprinters. J Physiol Anthropol Appl Hum Sci. 2001;20(2):141–7.

    Article  CAS  Google Scholar 

  64. Timmins RG. Biceps femoris long head muscle architecture a reliability and retrospective injury study. Med Sci Sports Exerc. 2015;47(5):905–13.

    Article  PubMed  Google Scholar 

  65. Timmins RG, Bourne MN, Hickey JT, Maniar N, Tofari PJ, Williams MD, et al. Effect of prior injury on changes to biceps femoris architecture across an australian football league season. Med Sci Sports Exerc. 2017;49(10):2102–9.

    Article  PubMed  Google Scholar 

  66. Morgan DL. New insights into the behavior of muscle during active lengthening. Biophys J. 1990;57(2):209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Freckleton G, Pizzari T. Risk factors for hamstring muscle strain injury in sport: a systematic review and meta-analysis. Br J Sports Med. 2013;47(6):351–8.

    Article  PubMed  Google Scholar 

  68. Pimenta R, Blazevich AJ, Freitas SR. Biceps femoris long-head architecture assessed using different sonographic techniques. Med Sci Sports Exerc. 2018;50(12):2584–94.

    Article  PubMed  Google Scholar 

  69. Ribeiro-Alvares JB, Marques VB, Vaz MA, Baroni BM. Four weeks of Nordic hamstring exercise reduce muscle injury risk factors in young adults. J Strength Cond Res. 2018;32:1254–62.

    Article  PubMed  Google Scholar 

  70. Alonso-Fernandez D, Docampo-Blanco P, Martinez-Fernandez J. Changes in muscle architecture of biceps femoris induced by eccentric strength training with nordic hamstring exercise. Scand J Med Sci Sports. 2018;28(1):88–94.

    Article  CAS  PubMed  Google Scholar 

  71. Guex K, Degache F, Morisod C, Sailly M, Millet GP. Hamstring architectural and functional adaptations following long vs. short muscle length eccentric training. Front Physiol. 2016;7:340.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Potier TG, Alexander CM, Seynnes OR. Effects of eccentric strength training on biceps femoris muscle architecture and knee joint range of movement. Eur J Appl Physiol. 2009;105(6):939–44.

    Article  PubMed  Google Scholar 

  73. Lovell R, Knox M, Weston M, Siegler JC, Brennan S, Marshall PWM. Hamstring injury prevention in soccer: before or after training? Scand J Med Sci Sports. 2018;28(2):658–66.

    Article  CAS  PubMed  Google Scholar 

  74. Presland JD, Timmins RG, Bourne MN, Williams MD, Opar DA. The effect of nordic hamstring exercise training volume on biceps femoris long head architectural adaptation. Scand J Med Sci Sports. 2018;28(7):1775–83.

    Article  CAS  PubMed  Google Scholar 

  75. Pollard CW, Opar DA, Williams MD, Bourne MN, Timmins RG. Razor hamstring curl and nordic hamstring exercise architectural adaptations: impact of exercise selection and intensity. Scand J Med Sci Sports. 2019;29(5):706–15.

    Article  PubMed  Google Scholar 

  76. Duhig SJ, Bourne MN, Buhmann RL, Williams MD, Minett GM, Roberts LA, et al. Effect of concentric and eccentric hamstring training on sprint recovery, strength and muscle architecture in inexperienced athletes. J Sci Med Sport. 2019;22(7):769–74.

    Article  PubMed  Google Scholar 

  77. Lacome M, Avrillon S, Cholley Y, Simpson B, Guilhem G, Buchheit M. Hamstring eccentric strengthening program: does training volume matter? Int J Sport Physiol. 2019;2019:1–27.

    Google Scholar 

  78. Guex K, Millet GP. Conceptual framework for strengthening exercises to prevent hamstring strains. Sports Med. 2013;43(12):1207–15.

    Article  PubMed  Google Scholar 

  79. Blazevich AJ, Gill ND, Bronks R, Newton RU. Training-specific muscle architecture adaptation after 5-wk training in athletes. Med Sci Sports Exerc. 2003;35(12):2013–22.

    Article  PubMed  Google Scholar 

  80. Chen TC, Nosaka K, Sacco P. Intensity of eccentric exercise, shift of optimum angle, and the magnitude of repeated-bout effect. J Appl Physiol (1985). 2007;102(3):992–9.

    Article  Google Scholar 

  81. Brockett C, Morgan D, Proske U. Human hamstring muscles adapt to eccentric exercise by changing optimum length. Med Sci Sports Exerc. 2001;33(5):783–90.

    Article  CAS  PubMed  Google Scholar 

  82. Brockett CL, Morgan DL, Proske U. Predicting hamstring strain injury in elite athletes. Med Sci Sports Exerc. 2004;36(3):379–87.

    Article  PubMed  Google Scholar 

  83. Lynn R, Morgan D. Decline running produces more sarcomeres in rat vastus intermedius muscle fibers than does incline running. J Appl Physiol. 1994;77(3):1439–44.

    Article  CAS  PubMed  Google Scholar 

  84. Lynn R, Talbot J, Morgan D. Differences in rat skeletal muscles after incline and decline running. J Appl Physiol. 1998;85(1):98.

    Article  CAS  PubMed  Google Scholar 

  85. Gleeson N, Eston R, Marginson V, McHugh M. Effects of prior concentric training on eccentric exercise induced muscle damage. Br J Sports Med. 2003;37(2):119–25; discussion 25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tidball JG. Myotendinous junction injury in relation to junction structure and molecular composition. Exerc Sport Sci Rev. 1991;19:419–45.

    Article  CAS  PubMed  Google Scholar 

  87. Koulouris G, Connell DA, Brukner P, Schneider-Kolsky M. Magnetic resonance imaging parameters for assessing risk of recurrent hamstring injuries in elite athletes. Am J Sport Med. 2007;35(9):1500–6.

    Article  Google Scholar 

  88. Rehorn MR, Blemker SS. The effects of aponeurosis geometry on strain injury susceptibility explored with a 3D muscle model. J Biomech. 2010;43(13):2574–81.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Evangelidis PE, Massey GJ, Pain MT, Folland JP. Biceps femoris aponeurosis size: a potential risk factor for strain injury? Med Sci Sports Exerc. 2015;47(7):1383–9.

    Article  PubMed  Google Scholar 

  90. Fiorentino NM, Epstein FH, Blemker SS. Activation and aponeurosis morphology affect in vivo muscle tissue strains near the myotendinous junction. J Biomech. 2012;45(4):647–52.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wakahara T, Ema R, Miyamoto N, Kawakami Y. Increase in vastus lateralis aponeurosis width induced by resistance training: implications for a hypertrophic model of pennate muscle. Eur J Appl Physiol. 2015;115(2):309–16.

    Article  PubMed  Google Scholar 

  92. Abe T, Kumagai K, Bemben MG. Muscle aponeurosis area is greater in hypertrophied than in normal muscle. J Gen Intern Med. 2012;27:399.

    Google Scholar 

  93. Jakobsen JR, Mackey AL, Knudsen AB, Koch M, Kjaer M, Krogsgaard MR. Composition and adaptation of human myotendinous junction and neighboring muscle fibers to heavy resistance training. Scand J Med Sci Sports. 2017;27(12):1547–59.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Bourne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bourne, M., Schuermans, J., Witvrouw, E., Aagaard, P., Shield, A. (2020). Neuromuscular Factors Related to Hamstring Muscle Function, Performance and Injury. In: Thorborg, K., Opar, D., Shield, A. (eds) Prevention and Rehabilitation of Hamstring Injuries. Springer, Cham. https://doi.org/10.1007/978-3-030-31638-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31638-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31637-2

  • Online ISBN: 978-3-030-31638-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics