Skip to main content

21 cm Absorption as a Probe of Dark Photons

  • Conference paper
  • First Online:
  • 727 Accesses

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 56))

Abstract

Dark radiation could have injected soft photons into the primordial plasma with energies far below the Cosmic Microwave Background (CMB) temperature. Measurements of the low energy tail of the CMB spectrum therefore open a new window into the properties of dark radiation. We present an example model where dark radiation, composed of dark photons, resonantly oscillate into ordinary photons during the cosmic dark ages, enhancing the low energy tail of the CMB. Our scenario can explain the stronger than expected 21 cm absorption observed by the EDGES experiment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. D.J. Fixsen, E.S. Cheng, J.M. Gales, J.C. Mather, R.A. Shafer, E.L. Wright, Astrophys. J. 473, 576 (1996). https://doi.org/10.1086/178173

    Article  ADS  Google Scholar 

  2. D.J. Fixsen et al., Astrophys. J. 734, 5 (2011). https://doi.org/10.1088/0004-637X/734/1/5

    Article  ADS  Google Scholar 

  3. M. Bersanelli, G.F. Smoot, M. Bensadoun, G. de Amici, M. Limon, S. Levin, Astrophys. Lett. Commun. 32, 7 (1995)

    ADS  Google Scholar 

  4. S.T. Staggs, N.C. Jarosik, D.T. Wilkinson, E.J. Wollack, Astrophys. Lett. Commun. 32, 3 (1995)

    ADS  Google Scholar 

  5. M. Pospelov, J. Pradler, J.T. Ruderman, A. Urbano, Phys. Rev. Lett. 121(3), 031103 (2018). https://doi.org/10.1103/PhysRevLett.121.031103

  6. T. Moroi, K. Nakayama, Y. Tang, Phys. Lett. B 783, 301 (2018). https://doi.org/10.1016/j.physletb.2018.07.002

    Article  ADS  Google Scholar 

  7. S. Furlanetto, S.P. Oh, F. Briggs, Phys. Rep. 433, 181 (2006). https://doi.org/10.1016/j.physrep.2006.08.002

    Article  ADS  Google Scholar 

  8. J.R. Pritchard, A. Loeb, Rep. Prog. Phys. 75, 086901 (2012). https://doi.org/10.1088/0034-4885/75/8/086901

    Article  ADS  Google Scholar 

  9. T. Venumadhav, L. Dai, A. Kaurov, M. Zaldarriaga (2018). https://doi.org/10.1103/PhysRevD.98.103513

  10. J.D. Bowman, A.E.E. Rogers, R.A. Monsalve, T.J. Mozdzen, N. Mahesh, Nature 555(7694), 67 (2018). https://doi.org/10.1038/nature25792

    Article  ADS  Google Scholar 

  11. J.B. Muñoz, A. Loeb (2018). https://doi.org/10.1038/s41586-018-0151-x

    Article  ADS  Google Scholar 

  12. A. Berlin, D. Hooper, G. Krnjaic, S.D. McDermott (2018). https://doi.org/10.1103/PhysRevLett.121.011102

  13. R. Barkana, N.J. Outmezguine, D. Redigolo, T. Volansky (2018). https://doi.org/10.1103/PhysRevD.98.103005

  14. A. Falkowski, K. Petraki (2018). arXiv:1803.10096

  15. C. Feng, G. Holder, Astrophys. J. 858(2), L17 (2018). https://doi.org/10.3847/2041-8213/aac0fe

    Article  ADS  Google Scholar 

  16. R. Essig, et al., in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), Minneapolis, MN, USA, July 29–August 6, 2013. http://inspirehep.net/record/1263039/files/arXiv:1311.0029.pdf

  17. K.E. Kunze, M.A. Vazquez-Mozo, JCAP 1512(12), 028 (2015). https://doi.org/10.1088/1475-7516/2015/12/028

    Article  ADS  Google Scholar 

  18. A. Mirizzi, J. Redondo, G. Sigl, JCAP 0903, 026 (2009). https://doi.org/10.1088/1475-7516/2009/03/026

    Article  ADS  Google Scholar 

  19. J. Chluba, Mon. Not. R. Astron. Soc. 454(4), 4182 (2015). https://doi.org/10.1093/mnras/stv2243

    Article  ADS  Google Scholar 

  20. V. Poulin, P.D. Serpico, J. Lesgourgues, JCAP 1608(08), 036 (2016). https://doi.org/10.1088/1475-7516/2016/08/036

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Thanks goes to the organizers and to the Simons Foundation for making this engaging workshop possible. We would also like to thank Maxim Pospelov, Josef Pradler, and Alfredo Urbano for collaborating on the work described in this section. This work is supported by NSF CAREER grant PHY-1554858.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua T. Ruderman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ruderman, J.T. (2019). 21 cm Absorption as a Probe of Dark Photons. In: Essig, R., Feng, J., Zurek, K. (eds) Illuminating Dark Matter. Astrophysics and Space Science Proceedings, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-030-31593-1_16

Download citation

Publish with us

Policies and ethics