Skip to main content

Therapeutic Use of Bioengineered Materials for Myocardial Infarction

  • Chapter
  • First Online:
Nanoengineering Materials for Biomedical Uses

Abstract

Cardiovascular disease is a leading cause of worldwide mortality. Despite the success of current therapies for acute myocardial infarction (MI), many patients still suffer irreversible damage, and the prevalence of heart failure is growing. After MI, the extracellular matrix (ECM) of the damaged myocardium is modified to produce scar tissue. This remodeling reduces the efficacy of therapies and also hinders endogenous repair mechanisms. Therefore, a strategy to prevent adverse remodeling and provide a suitable ECM environment that supports cells, tissue repair and functional restoration may lead to a superior therapeutic outcome in MI patients. Bioengineered materials are an attractive approach for achieving this. Herein, we review current research on materials that can act as a biomimetic matrix for supporting cellular repair in the post-MI heart. We also examine how nanomaterials are being used to treat the damaged heart. Finally, we provide an overview of the breakthroughs and limitations of biomaterial therapies for cardiac repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO. Global health estimates 2016: deaths by cause, age, sex, by country and by region, 2000–2016. Geneva; 2018.

    Google Scholar 

  2. Steenbergen C, Frangogiannis NG. Ischemic heart disease, chap. 36. In: Hill JA, Olson EN, editors. Muscle. Boston/Waltham: Academic Press; 2012. p. 495–521.

    Chapter  Google Scholar 

  3. Waller DG, Sampson AP. Ischaemic heart disease, chap. 5. In: Waller DG, Sampson AP, editors. Medical pharmacology and therapeutics, 5th ed. Elsevier; 2018. p. 93–110.

    Google Scholar 

  4. WHO. International classification of diseases 11th revision. https://icd.who.int/. 21 Dec 2018.

  5. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, Ahmed M, Aksut B, Alam T, Alam K, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1–25.

    Google Scholar 

  6. Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. The Lancet. 2017;389(10065):197–210.

    Article  Google Scholar 

  7. Savarese G, Lund LH. Global public health burden of heart failure. Card Fail Rev. 2017;3(1):7–11.

    Article  Google Scholar 

  8. Azad N, Lemay G. Management of chronic heart failure in the older population. J Geriatr Cardiol. 2014;11(4):329–37.

    CAS  Google Scholar 

  9. Bonacchi M, Harmelin G, Bugetti M, Sani G. Mechanical ventricular assistance as destination therapy for end-stage heart failure: has it become a first line therapy? Front Surg 2015;2(35).

    Google Scholar 

  10. Laflamme MA, Sebastian MM, Buetow BS. Cardiovascular, chap. 10. In: Treuting PM, Dintzis SM, editors. Comparative anatomy and histology. San Diego: Academic Press; 2012. p. 135–53.

    Chapter  Google Scholar 

  11. Jourdan-LeSaux C, Zhang J, Lindsey ML. Extracellular matrix roles during cardiac repair. Life Sci. 2010;87(13):391–400.

    Article  CAS  Google Scholar 

  12. Horn MA, Trafford AW. Aging and the cardiac collagen matrix: novel mediators of fibrotic remodelling. J Mol Cell Cardiol. 2016;93:175–85.

    Article  CAS  Google Scholar 

  13. LeGrice I, Pope A, Smaill B. The architecture of the heart: myocyte organization and the cardiac extracellular matrix. In: Villarreal FJ, editor. Interstitial fibrosis in heart failure. New York, NY: Springer; 2005. p. 3–21.

    Google Scholar 

  14. Shamhart PE, Meszaros JG. Non-fibrillar collagens: key mediators of post-infarction cardiac remodeling? J Mol Cell Cardiol. 2010;48(3):530–7.

    Article  CAS  Google Scholar 

  15. Zeltz C, Gullberg D. The integrin–collagen connection—a glue for tissue repair? J Cell Sci. 2016;129(4):653.

    Article  CAS  Google Scholar 

  16. Shattil SJ, Kim C, Ginsberg MH. The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol. 2010;11:288.

    Article  CAS  Google Scholar 

  17. Xu J, Mosher D. Fibronectin and other adhesive glycoproteins. In: Mecham RP, editor. The extracellular matrix: an overview. Berlin, Heidelberg: Springer; 2011. p. 41–75.

    Google Scholar 

  18. Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG. The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol. 2010;48(3):504–11.

    Article  CAS  Google Scholar 

  19. Lindsey ML. MMP induction and inhibition in myocardial infarction. Heart Fail Rev. 2004;9(1):7–19.

    Article  CAS  Google Scholar 

  20. Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol. 2001;17(1):463–516.

    Article  CAS  Google Scholar 

  21. Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res. 2016;119(1):91–112.

    Article  CAS  Google Scholar 

  22. Hodgkinson CP, Bareja A, Gomez JA, Dzau VJ. Emerging concepts in paracrine mechanisms in regenerative cardiovascular medicine and biology. Circ Res. 2016;118(1):95–107.

    Article  CAS  Google Scholar 

  23. Fu X, Khalil H, Kanisicak O, Boyer JG, Vagnozzi RJ, Maliken BD, Sargent MA, Prasad V, Valiente-Alandi I, Blaxall BC, et al. Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J Clin Invest. 2018;128(5):2127–43.

    Article  Google Scholar 

  24. Wei S, Chow LT, Shum IO, Qin L, Sanderson JE. Left and right ventricular collagen type I/III ratios and remodeling post-myocardial infarction. J Card Fail. 1999;5(2):117–26.

    Article  CAS  Google Scholar 

  25. Sun Y, Weber KT. Infarct scar: a dynamic tissue. Cardiovasc Res. 2000;46(2):250–6.

    Article  CAS  Google Scholar 

  26. Mason C, Dunnill P. A brief definition of regenerative medicine. Regen Med. 2007;3(1):1–5.

    Article  Google Scholar 

  27. Vadakke-Madathil S, Chaudhry Hina W. Cardiac regeneration. Circ Res. 2018;123(1):24–6.

    Article  CAS  Google Scholar 

  28. Tzahor E, Poss KD. Cardiac regeneration strategies: staying young at heart. Science. 2017;356(6342):1035.

    Article  CAS  Google Scholar 

  29. Cambria E, Pasqualini FS, Wolint P, Günter J, Steiger J, Bopp A, Hoerstrup SP, Emmert MY. Translational cardiac stem cell therapy: advancing from first-generation to next-generation cell types. NPJ Regen Med. 2017;2(1):17.

    Article  Google Scholar 

  30. Hastings CL, Roche ET, Ruiz-Hernandez E, Schenke-Layland K, Walsh CJ, Duffy GP. Drug and cell delivery for cardiac regeneration. Adv Drug Deliv Rev. 2015;84:85–106.

    Article  CAS  Google Scholar 

  31. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123(24):4195.

    Article  CAS  Google Scholar 

  32. Li Z, Masumoto H, Jo JI, Yamazaki K, Ikeda T, Tabata Y, Minatoya K. Sustained release of basic fibroblast growth factor using gelatin hydrogel improved left ventricular function through the alteration of collagen subtype in a rat chronic myocardial infarction model. Gen Thorac Cardiovasc Surg. 2018;66(11):641–7.

    Article  Google Scholar 

  33. Kumagai M, Minakata K, Masumoto H, Yamamoto M, Yonezawa A, Ikeda T, Uehara K, Yamazaki K, Ikeda T, Matsubara K, et al. A therapeutic angiogenesis of sustained release of basic fibroblast growth factor using biodegradable gelatin hydrogel sheets in a canine chronic myocardial infarction model. Heart Vessels. 2018;33(10):1251-7.

    Article  Google Scholar 

  34. Qu H, Xie B-D, Wu J, Lv B, Chuai J-B, Li J-Z, Cai J, Wu H, Jiang S-L, Leng X-P, et al. Improved left ventricular aneurysm repair with cell- and cytokine-seeded collagen patches. Stem Cells Int. 2018;2018:4717802.

    Article  CAS  Google Scholar 

  35. O’Neill HS, O’Sullivan J, Porteous N, Ruiz-Hernandez E, Kelly HM, O’Brien FJ, Duffy GP. A collagen cardiac patch incorporating alginate microparticles permits the controlled release of hepatocyte growth factor and insulin-like growth factor-1 to enhance cardiac stem cell migration and proliferation. J Tissue Eng Regen Med. 2018;12(1):e384–94.

    Article  CAS  Google Scholar 

  36. Pandey R, Velasquez S, Durrani S, Jiang M, Neiman M, Crocker JS, Benoit JB, Rubinstein J, Paul A, Ahmed RP. MicroRNA-1825 induces proliferation of adult cardiomyocytes and promotes cardiac regeneration post ischemic injury. Am J Transl Res. 2017;9(6):3120–37.

    CAS  Google Scholar 

  37. Wang LL, Liu Y, Chung JJ, Wang T, Gaffey AC, Lu M, Cavanaugh CA, Zhou S, Kanade R, Atluri P, et al. Local and sustained miRNA delivery from an injectable hydrogel promotes cardiomyocyte proliferation and functional regeneration after ischemic injury. Nat Biomed Eng. 2017;1:983–92.

    Article  CAS  Google Scholar 

  38. Monaghan MG, Holeiter M, Brauchle E, Layland SL, Lu Y, Deb A, Pandit A, Nsair A, Schenke-Layland K. Exogenous miR-29B delivery through a hyaluronan-based injectable system yields functional maintenance of the infarcted myocardium. Tissue Eng Part A. 2017;24(1–2):57–67.

    Google Scholar 

  39. Wang Y, Zhang J, Qin Z, Fan Z, Lu C, Chen B, Zhao J, Li X, Xiao F, Lin X, et al. Preparation of high bioactivity multilayered bone-marrow mesenchymal stem cell sheets for myocardial infarction using a 3D-dynamic system. Acta Biomater. 2018;72:182–95.

    Article  CAS  Google Scholar 

  40. Paul A, Hasan A, Kindi HA, Gaharwar AK, Rao VTS, Nikkhah M, Shin SR, Krafft D, Dokmeci MR, Shum-Tim D, et al. Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano. 2014;8(8):8050–62.

    Article  CAS  Google Scholar 

  41. Purcell BP, Barlow SC, Perreault PE, Freeburg L, Doviak H, Jacobs J, Hoenes A, Zellars KN, Khakoo AY, Lee T, et al. Delivery of a matrix metalloproteinase-responsive hydrogel releasing TIMP-3 after myocardial infarction: effects on left ventricular remodeling. Am J Physiol Heart Circ Physiol. 2018;315(4):H814–25.

    Article  CAS  Google Scholar 

  42. Fan Z, Xu Z, Niu H, Gao N, Guan Y, Li C, Dang Y, Cui X, Liu XL, Duan Y, et al. An injectable oxygen release system to augment cell survival and promote cardiac repair following myocardial infarction. Sci Rep. 2018;8(1):1371.

    Google Scholar 

  43. Waters R, Alam P, Pacelli S, Chakravarti AR, Ahmed RPH, Paul A. Stem cell-inspired secretome-rich injectable hydrogel to repair injured cardiac tissue. Acta Biomater. 2018;69:95–106.

    Article  CAS  Google Scholar 

  44. Atala A. Tissue engineering and regenerative medicine: concepts for clinical application. Rejuvenation Res. 2004;7(1):15–31.

    Article  Google Scholar 

  45. Hasirci V, Yucel D. Polymers used in tissue engineering. In: Wnek GE, Bowlin GL, editors. Encyclopedia of biomaterials and biomedical engineering. New York: Informa Healthcare USA, Inc.; 2008. p. 2282–99.

    Google Scholar 

  46. Boland ED, Espy PG, Bowlin GL. Tissue engineering scaffolds. In: Wnek GE, Bowlin GL, editors. Encyclopedia of biomaterials and biomedical engineering. New York: Informa Healthcare USA, Inc.; 2008. p. 2828–37.

    Google Scholar 

  47. Jang J, Park H-J, Kim S-W, Kim H, Park JY, Na SJ, Kim HJ, Park MN, Choi SH, Park SH, et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials. 2017;112:264–74.

    Article  CAS  Google Scholar 

  48. French KM, Somasuntharam I, Davis ME. Self-assembling peptide-based delivery of therapeutics for myocardial infarction. Adv Drug Deliv Rev. 2016;96:40–53.

    Article  CAS  Google Scholar 

  49. Norahan MH, Amroon M, Ghahremanzadeh R, Mahmoodi M, Baheiraei N. Electroactive graphene oxide-incorporated collagen assisting vascularization for cardiac tissue engineering. J Biomed Mater Res A. 2019;107(1):204–19.

    Article  CAS  Google Scholar 

  50. Hosoyama K, Ahumada M, McTiernan CD, Davis DR, Variola F, Ruel M, Liang W, Suuronen EJ, Alarcon EI. Nanoengineered electroconductive collagen-based cardiac patch for infarcted myocardium repair. ACS Appl Mater Interfaces. 2018;10(51):44668-77.

    Article  CAS  Google Scholar 

  51. Dvir T, Timko BP, Brigham MD, Naik SR, Karajanagi SS, Levy O, Jin H, Parker KK, Langer R, Kohane DS. Nanowired three-dimensional cardiac patches. Nat Nanotechnol. 2011;6(11):720–5.

    Article  CAS  Google Scholar 

  52. Sun H, Zhou J, Huang Z, Qu L, Lin N, Liang C, Dai R, Tang L, Tian F. Carbon nanotube-incorporated collagen hydrogels improve cell alignment and the performance of cardiac constructs. Int J Nanomed. 2017;12:3109–20.

    Article  CAS  Google Scholar 

  53. Sherrell PC, Cieślar-Pobuda A, Ejneby MS, Sammalisto L, Gelmi A, de Muinck E, Brask J, Łos MJ, Rafat M. Rational design of a conductive collagen heart patch. Macromol Biosci. 2017;17(7):1600446.

    Article  CAS  Google Scholar 

  54. Kai D, Prabhakaran MP, Jin G, Ramakrishna S. Biocompatibility evaluation of electrically conductive nanofibrous scaffolds for cardiac tissue engineering. J Mater Chem B. 2013;1(17):2305–14.

    Article  CAS  Google Scholar 

  55. He Y, Ye G, Song C, Li C, Xiong W, Yu L, Qiu X, Wang L. Mussel-inspired conductive nanofibrous membranes repair myocardial infarction by enhancing cardiac function and revascularization. Theranostics. 2018;8(18):5159–77.

    Article  CAS  Google Scholar 

  56. Dong R, Zhao X, Guo B, Ma PX. Self-healing conductive injectable hydrogels with antibacterial activity as cell delivery carrier for cardiac cell therapy. ACS Appl Mater Interfaces. 2016;8(27):17138–50.

    Article  CAS  Google Scholar 

  57. Bao R, Tan B, Liang S, Zhang N, Wang W, Liu W. A π-π conjugation-containing soft and conductive injectable polymer hydrogel highly efficiently rebuilds cardiac function after myocardial infarction. Biomaterials. 2017;122:63–71.

    Article  CAS  Google Scholar 

  58. Mihic A, Cui Z, Wu J, Vlacic G, Miyagi Y, Li S-H, Lu S, Sung H-W, Weisel Richard D, Li R-K. A conductive polymer hydrogel supports cell electrical signaling and improves cardiac function after implantation into myocardial infarct. Circulation. 2015;132(8):772–84.

    Article  CAS  Google Scholar 

  59. Saravanan S, Sareen N, Abu-El-Rub E, Ashour H, Sequiera GL, Ammar HI, Gopinath V, Shamaa AA, Sayed SSE, Moudgil M, et al. Graphene oxide-gold nanosheets containing chitosan scaffold improves ventricular contractility and function after implantation into infarcted heart. Sci Rep. 2018;8(1):15069.

    Google Scholar 

  60. Kapnisi M, Mansfield C, Marijon C, Guex AG, Perbellini F, Bardi I, Humphrey EJ, Puetzer JL, Mawad D, Koutsogeorgis DC, et al. Auxetic cardiac patches with tunable mechanical and conductive properties toward treating myocardial infarction. Adv Funct Mater. 2018;28(21):1800618.

    Article  CAS  Google Scholar 

  61. Zhou J, Yang X, Liu W, Wang C, Shen Y, Zhang F, Zhu H, Sun H, Chen J, Lam J, et al. Injectable OPF/graphene oxide hydrogels provide mechanical support and enhance cell electrical signaling after implantation into myocardial infarct. Theranostics. 2018;8(12):3317–30.

    Article  CAS  Google Scholar 

  62. Christman KL, Lee RJ. Biomaterials for the treatment of myocardial infarction. J Am Coll Cardiol. 2006;48(5):907–13.

    Article  CAS  Google Scholar 

  63. Domenech M, Polo-Corrales L, Ramirez-Vick JE, Freytes DO. Tissue engineering strategies for myocardial regeneration: acellular versus cellular scaffolds? Tissue Eng Part B Rev. 2016;22(6):438–58.

    Article  CAS  Google Scholar 

  64. Ye L, Zimmermann W-H, Garry Daniel J, Zhang J. Patching the heart. Circ Res. 2013;113(7):922–32.

    Article  CAS  Google Scholar 

  65. Wang Q-l, Wang H-j, Li Z-h, Wang Y-l, Wu X-p, Tan Y-z. Mesenchymal stem cell-loaded cardiac patch promotes epicardial activation and repair of the infarcted myocardium. J Cell Mol Med. 2017;21(9):1751–66.

    Article  CAS  Google Scholar 

  66. Suarez SL, Rane AA, Muñoz A, Wright AT, Zhang SX, Braden RL, Almutairi A, McCulloch AD, Christman KL. Intramyocardial injection of hydrogel with high interstitial spread does not impact action potential propagation. Acta Biomater. 2015;26:13–22.

    Article  CAS  Google Scholar 

  67. Qiu Y, Hamilton SK, Temenoff J. Improving mechanical properties of injectable polymers and composites, chap. 4. In: Vernon B, editor. Injectable biomaterials. Woodhead Publishing; 2011. p. 61–91.

    Google Scholar 

  68. Lakshmanan R, Kumaraswamy P, Krishnan UM, Sethuraman S. Engineering a growth factor embedded nanofiber matrix niche to promote vascularization for functional cardiac regeneration. Biomaterials. 2016;97:176–95.

    Article  CAS  Google Scholar 

  69. Sadtler K, Singh A, Wolf MT, Wang X, Pardoll DM, Elisseeff JH. Design, clinical translation and immunological response of biomaterials in regenerative medicine. Nat Rev Mater. 2016;1:16040.

    Article  CAS  Google Scholar 

  70. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24(24):4337–51.

    Article  CAS  Google Scholar 

  71. Lee JH. Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering. Biomater Res. 2018;22(1):27.

    Article  CAS  Google Scholar 

  72. Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev. 2001;101(7):1869–80.

    Article  CAS  Google Scholar 

  73. Rodell CB, Kaminski AL, Burdick JA. Rational design of network properties in guest-host assembled and shear-thinning hyaluronic acid hydrogels. Biomacromolecules. 2013;14(11):4125–34.

    Article  CAS  Google Scholar 

  74. Rodell CB, MacArthur JW Jr, Dorsey SM, Wade RJ, Wang LL, Woo YJ, Burdick JA. Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties in vivo. Adv Funct Mater. 2015;25(4):636–44.

    Article  CAS  Google Scholar 

  75. Wong Po Foo CTS, Lee JS, Mulyasasmita W, Parisi-Amon A, Heilshorn SC. Two-component protein-engineered physical hydrogels for cell encapsulation. PNAS 2009;106(52):22067–72.

    Article  Google Scholar 

  76. Lu HD, Charati MB, Kim IL, Burdick JA. Injectable shear-thinning hydrogels engineered with a self-assembling Dock-and-Lock mechanism. Biomaterials. 2012;33(7):2145–53.

    Article  CAS  Google Scholar 

  77. Liu Y, Hsu S-h. Synthesis and biomedical applications of self-healing hydrogels. Front Chem. 2018;6(449).

    Google Scholar 

  78. Lindsey ML, Bolli R, Canty JM Jr, Du X-J, Frangogiannis NG, Frantz S, Gourdie RG, Holmes JW, Jones SP, Kloner RA, et al. Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol. 2018;314(4):H812–38.

    Article  CAS  Google Scholar 

  79. Naderi H, Matin MM, Bahrami AR. Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems. J Biomater Appl. 2011;26(4):383–417.

    Article  CAS  Google Scholar 

  80. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32(8):762–98.

    Article  CAS  Google Scholar 

  81. Wang T, Lew J, Premkumar J, Poh CL, Naing MW. Production of recombinant collagen: state of the art and challenges. Eng Biol. 2017;1(1):18–23.

    Article  Google Scholar 

  82. Blackburn NJR, Sofrenovic T, Kuraitis D, Ahmadi A, McNeill B, Deng C, Rayner KJ, Zhong Z, Ruel M, Suuronen EJ. Timing underpins the benefits associated with injectable collagen biomaterial therapy for the treatment of myocardial infarction. Biomaterials. 2015;39:182–92.

    Article  CAS  Google Scholar 

  83. Serpooshan V, Zhao M, Metzler SA, Wei K, Shah PB, Wang A, Mahmoudi M, Malkovskiy AV, Rajadas J, Butte MJ, et al. The effect of bioengineered acellular collagen patch on cardiac remodeling and ventricular function post myocardial infarction. Biomaterials. 2013;34(36):9048–55.

    Article  CAS  Google Scholar 

  84. Dai W, Wold LE, Dow JS, Kloner RA. Thickening of the infarcted wall by collagen injection improves left ventricular function in rats: a novel approach to preserve cardiac function after myocardial infarction. J Am Coll Cardiol. 2005;46(4):714–9.

    Article  CAS  Google Scholar 

  85. Joshi J, Brennan D, Beachley V, Kothapalli CR. Cardiomyogenic differentiation of human bone marrow-derived mesenchymal stem cell spheroids within electrospun collagen nanofiber mats. J Biomed Mater Res A. 2018;106(12):3303–12.

    Article  CAS  Google Scholar 

  86. Valarmathi MT, Fuseler JW, Davis JM, Price RL. A novel human tissue-engineered 3-D functional vascularized cardiac muscle construct. Front Cell Dev Biol. 2017;5(2).

    Google Scholar 

  87. Ahmadi A, McNeill B, Vulesevic B, Kordos M, Mesana L, Thorn S, Renaud JM, Manthorp E, Kuraitis D, Toeg H, et al. The role of integrin α2 in cell and matrix therapy that improves perfusion, viability and function of infarcted myocardium. Biomaterials. 2014;35(17):4749–58.

    Article  CAS  Google Scholar 

  88. Giordano C, Thorn Stephanie L, Renaud Jennifer M, Al-Atassi T, Boodhwani M, Klein R, Kuraitis D, Dwivedi G, Zhang P, DaSilva Jean N, et al. Preclinical evaluation of biopolymer-delivered circulating angiogenic cells in a swine model of hibernating myocardium. Circ Cardiovasc Imaging. 2013;6(6):982–91.

    Google Scholar 

  89. Xu G, Wang X, Deng C, Teng X, Suuronen EJ, Shen Z, Zhong Z. Injectable biodegradable hybrid hydrogels based on thiolated collagen and oligo(acryloyl carbonate)–poly(ethylene glycol)–oligo(acryloyl carbonate) copolymer for functional cardiac regeneration. Acta Biomater. 2015;15:55–64.

    Article  CAS  Google Scholar 

  90. Xia Y, Zhu K, Lai H, Lang M, Xiao Y, Lian S, Guo C, Wang C. Enhanced infarct myocardium repair mediated by thermosensitive copolymer hydrogel-based stem cell transplantation. Exp Biol Med (Maywood). 2015;240(5):593–600.

    Article  CAS  Google Scholar 

  91. Liu Y, Xu Y, Wang Z, Wen D, Zhang W, Schmull S, Li H, Chen Y, Xue S. Electrospun nanofibrous sheets of collagen/elastin/polycaprolactone improve cardiac repair after myocardial infarction. Am J Transl Res. 2016;8(4):1678–94.

    CAS  Google Scholar 

  92. Shafiq M, Zhang Y, Zhu D, Zhao Z, Kim D-H, Kim SH, Kong D. In situ cardiac regeneration by using neuropeptide substance P and IGF-1C peptide eluting heart patches. Regen Biomater. 2018;5(5):303–16.

    Article  CAS  Google Scholar 

  93. Reis LA, Chiu LL, Wu J, Feric N, Laschinger C, Momen A, Li R-K, Radisic M. Hydrogels with integrin-binding angiopoietin-1-derived peptide, QHREDGS, for treatment of acute myocardial infarction. Circ Heart Fail. 2015;8(2):333–41.

    CAS  Google Scholar 

  94. Hosoyama K, Ahumada M, McTiernan CD, Bejjani J, Variola F, Ruel M, Xu B, Liang W, Suuronen EJ, Alarcon EI. Multi-functional thermo-crosslinkable collagen-metal nanoparticle composites for tissue regeneration: nanosilver vs. nanogold. RSC Adv. 2017;7(75):47704–8.

    Article  CAS  Google Scholar 

  95. Chachques JC, Trainini JC, Lago N, Masoli OH, Barisani JL, Cortes-Morichetti M, Schussler O, Carpentier A. Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM clinical trial): one year follow-up. Cell Transplant. 2007;16(9):927–34.

    Article  Google Scholar 

  96. Latifi N, Asgari M, Vali H, Mongeau L. A tissue-mimetic nano-fibrillar hybrid injectable hydrogel for potential soft tissue engineering applications. Sci Rep. 2018;8(1):1047.

    Article  CAS  Google Scholar 

  97. Su K, Wang C. Recent advances in the use of gelatin in biomedical research. Biotechnol Lett. 2015;37(11):2139–45.

    Article  CAS  Google Scholar 

  98. Nakajima K, Fujita J, Matsui M, Tohyama S, Tamura N, Kanazawa H, Seki T, Kishino Y, Hirano A, Okada M, et al. Gelatin hydrogel enhances the engraftment of transplanted cardiomyocytes and angiogenesis to ameliorate cardiac function after myocardial infarction. PLoS One. 2015;10(7):e0133308.

    Article  CAS  Google Scholar 

  99. Zhou J, Chen J, Sun H, Qiu X, Mou Y, Liu Z, Zhao Y, Li X, Han Y, Duan C, et al. Engineering the heart: evaluation of conductive nanomaterials for improving implant integration and cardiac function. Sci Rep. 2014;4:3733.

    Google Scholar 

  100. Shin SR, Jung SM, Zalabany M, Kim K, Zorlutuna P, Kim Sb, Nikkhah M, Khabiry M, Azize M, Kong J, et al. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano. 2013;7(3):2369–80.

    Article  CAS  Google Scholar 

  101. Noshadi I, Hong S, Sullivan KE, Shirzaei Sani E, Portillo-Lara R, Tamayol A, Shin SR, Gao AE, Stoppel WL, Black Iii LD, et al. In vitro and in vivo analysis of visible light crosslinkable gelatin methacryloyl (GelMA) hydrogels. Biomater Sci. 2017;5(10):2093–105.

    Article  CAS  Google Scholar 

  102. Yang B, Yao F, Hao T, Fang W, Ye L, Zhang Y, Wang Y, Li J, Wang C. Development of electrically conductive double-network hydrogels via one-step facile strategy for cardiac tissue engineering. Adv Healthcare Mater. 2016;5:474–88.

    Article  CAS  Google Scholar 

  103. Wang W, Tao H, Zhao Y, Sun X, Tang J, Selomulya C, Tang J, Chen T, Wang Y, Shu M, et al. Implantable and biodegradable macroporous iron oxide frameworks for efficient regeneration and repair of infracted heart. Theranostics. 2017;7(7):1966–75.

    Article  CAS  Google Scholar 

  104. Chang M-Y, Huang T-T, Chen C-H, Cheng B, Hwang S-M, Hsieh PCH. Injection of human cord blood cells with hyaluronan improves postinfarction cardiac repair in pigs. Stem Cells Transl Med. 2016;5(1):56–66.

    Article  CAS  Google Scholar 

  105. Vu TD, Pal SN, Ti L-K, Martinez EC, Rufaihah AJ, Ling LH, Lee C-N, Richards AM, Kofidis T. An autologous platelet-rich plasma hydrogel compound restores left ventricular structure, function and ameliorates adverse remodeling in a minimally invasive large animal myocardial restoration model: a translational approach: Vu and Pal “myocardial repair: PRP, hydrogel and supplements”. Biomaterials. 2015;45:27–35.

    Article  CAS  Google Scholar 

  106. Rodell CB, Lee ME, Wang H, Takebayashi S, Takayama T, Kawamura T, Arkles JS, Dusaj NN, Dorsey SM, Witschey WRT, et al. Injectable shear-thinning hydrogels for minimally invasive delivery to infarcted myocardium to limit left ventricular remodeling. Circ Cardiovasc Interv. 2016;9(10):e004058.

    Google Scholar 

  107. Wang LL, Chung JJ, Li EC, Uman S, Atluri P, Burdick JA. Injectable and protease-degradable hydrogel for siRNA sequestration and triggered delivery to the heart. J Control Release. 2018;285:152–61.

    Article  CAS  Google Scholar 

  108. Chen CW, Wang LL, Zaman S, Gordon J, Arisi MF, Venkataraman CM, Chung JJ, Hung G, Gaffey AC, Spruce LA, et al. Sustained release of endothelial progenitor cell-derived extracellular vesicles from shear-thinning hydrogels improves angiogenesis and promotes function after myocardial infarction. Cardiovasc Res. 2018;114(7):1029–40.

    Article  CAS  Google Scholar 

  109. Fan Z, Fu M, Xu Z, Zhang B, Li Z, Li H, Zhou X, Liu X, Duan Y, Lin P-H, et al. Sustained release of a peptide-based matrix metalloproteinase-2 inhibitor to attenuate adverse cardiac remodeling and improve cardiac function following myocardial infarction. Biomacromolecules. 2017;18(9):2820–9.

    Article  CAS  Google Scholar 

  110. Wang W, Tan B, Chen J, Bao R, Zhang X, Liang S, Shang Y, Liang W, Cui Y, Fan G, et al. An injectable conductive hydrogel encapsulating plasmid DNA-eNOs and ADSCs for treating myocardial infarction. Biomaterials. 2018;160:69–81.

    Article  CAS  Google Scholar 

  111. Dorsey SM, McGarvey JR, Wang H, Nikou A, Arama L, Koomalsingh KJ, Kondo N, Gorman JH, Pilla JJ, Gorman RC, et al. MRI evaluation of injectable hyaluronic acid-based hydrogel therapy to limit ventricular remodeling after myocardial infarction. Biomaterials. 2015;69:65–75.

    Article  CAS  Google Scholar 

  112. Tang J, Vandergriff A, Wang Z, Hensley MT, Cores J, Allen TA, Dinh P-U, Zhang J, Caranasos TG, Cheng K. A regenerative cardiac patch formed by spray painting of biomaterials onto the heart. Tissue Eng Part C. 2017;23(3):146–55.

    Article  CAS  Google Scholar 

  113. Vallée J-P, Hauwel M, Lepetit-Coiffé M, Bei W, Montet-Abou K, Meda P, Gardier S, Zammaretti P, Kraehenbuehl TP, Herrmann F, et al. Embryonic stem cell-based cardiopatches improve cardiac function in infarcted rats. Stem Cells Transl Med. 2012;1(3):248–60.

    Article  CAS  Google Scholar 

  114. Xiong Q, Hill KL, Li Q, Suntharalingam P, Mansoor A, Wang X, Jameel MN, Zhang P, Swingen C, Kaufman DS, et al. A fibrin patch-based enhanced delivery of human embryonic stem cell-derived vascular cell transplantation in a porcine model of postinfarction left ventricular remodeling. Stem Cells. 2011;29(2):367–75.

    Article  CAS  Google Scholar 

  115. Bellamy V, Vanneaux V, Bel A, Nemetalla H, Emmanuelle Boitard S, Farouz Y, Joanne P, Perier M-C, Robidel E, Mandet C, et al. Long-term functional benefits of human embryonic stem cell-derived cardiac progenitors embedded into a fibrin scaffold. J Heart Lung Transplant. 2015;34(9):1198–207.

    Article  Google Scholar 

  116. Blondiaux E, Pidial L, Autret G, Rahmi G, Balvay D, Audureau E, Wilhelm C, Guerin CL, Bruneval P, Silvestre J-S, et al. Bone marrow-derived mesenchymal stem cell-loaded fibrin patches act as a reservoir of paracrine factors in chronic myocardial infarction. J Tissue Eng Regen Med. 2017;11(12):3417–27.

    Article  CAS  Google Scholar 

  117. Wendel JS, Ye L, Tao R, Zhang J, Zhang J, Kamp TJ, Tranquillo RT. Functional effects of a tissue-engineered cardiac patch from human induced pluripotent stem cell-derived cardiomyocytes in a rat infarct model. Stem Cells Transl Med. 2015;4(11):1324–32.

    Article  CAS  Google Scholar 

  118. Mattapally S, Zhu W, Fast VG, Gao L, Worley C, Kannappan R, Borovjagin AV, Zhang J. Spheroids of cardiomyocytes derived from human-induced pluripotent stem cells improve recovery from myocardial injury in mice. Am J Physiol Heart Circ Physiol. 2018;315(2):H327–39.

    Article  CAS  Google Scholar 

  119. Roura S, Gálvez-Montón C, Bayes-Genis A. Fibrin, the preferred scaffold for cell transplantation after myocardial infarction? An old molecule with a new life. J Tissue Eng Regen Med. 2017;11(8):2304–13.

    Article  CAS  Google Scholar 

  120. Higuchi A, Ku N-J, Tseng Y-C, Pan C-H, Li H-F, Kumar SS, Ling Q-D, Chang Y, Alarfaj AA, Munusamy MA, et al. Stem cell therapies for myocardial infarction in clinical trials: bioengineering and biomaterial aspects. Lab Invest. 2017;97:1167.

    Article  CAS  Google Scholar 

  121. Menasché P, Vanneaux V, Hagège A, Bel A, Cholley B, Cacciapuoti I, Parouchev A, Benhamouda N, Tachdjian G, Tosca L, et al. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J. 2015;36(30):2011–7.

    Article  Google Scholar 

  122. Gao L, Gregorich Zachery R, Zhu W, Mattapally S, Oduk Y, Lou X, Kannappan R, Borovjagin Anton V, Walcott Gregory P, Pollard Andrew E, et al. Large cardiac muscle patches engineered from human induced-pluripotent stem cell-derived cardiac cells improve recovery from myocardial infarction in swine. Circulation. 2018;137(16):1712–30.

    Article  Google Scholar 

  123. Riemenschneider SB, Mattia DJ, Wendel JS, Schaefer JA, Ye L, Guzman PA, Tranquillo RT. Inosculation and perfusion of pre-vascularized tissue patches containing aligned human microvessels after myocardial infarction. Biomaterials. 2016;97:51–61.

    Article  CAS  Google Scholar 

  124. Morin KT, Dries-Devlin JL, Tranquillo RT. Engineered microvessels with strong alignment and high lumen density via cell-induced fibrin gel compaction and interstitial flow. Tissue Eng Part A. 2013;20(3–4):553–65.

    Google Scholar 

  125. Su T, Huang K, Daniele MA, Hensley MT, Young AT, Tang J, Allen TA, Vandergriff AC, Erb PD, Ligler FS, et al. Cardiac stem cell patch integrated with microengineered blood vessels promotes cardiomyocyte proliferation and neovascularization after acute myocardial infarction. ACS Appl Mater Interfaces. 2018;10(39):33088–96.

    Article  CAS  Google Scholar 

  126. Wang Z, Lee SJ, Cheng H-J, Yoo JJ, Atala A. 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomater. 2018;70:48–56.

    Article  CAS  Google Scholar 

  127. Rufaihah AJ, Johari NA, Vaibavi SR, Plotkin M, Di Thien DT, Kofidis T, Seliktar D. Dual delivery of VEGF and ANG-1 in ischemic hearts using an injectable hydrogel. Acta Biomater. 2017;48:58–67.

    Article  CAS  Google Scholar 

  128. Bearzi C, Gargioli C, Baci D, Fortunato O, Shapira-Schweitzer K, Kossover O, Latronico MVG, Seliktar D, Condorelli G, Rizzi R. PlGF-MMP9-engineered iPS cells supported on a PEG-fibrinogen hydrogel scaffold possess an enhanced capacity to repair damaged myocardium. Cell Death Dis. 2014;5(2):e1053.

    Article  CAS  Google Scholar 

  129. Spotnitz WD. Fibrin sealant: the only approved hemostat, sealant, and adhesive—a laboratory and clinical perspective. ISRN Surg. 2014;2014:203943.

    Article  Google Scholar 

  130. Ott HC, Matthiesen TS, Goh S-K, Black LD, Kren SM, Netoff TI, Taylor DA. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14:213.

    Article  CAS  Google Scholar 

  131. Wassenaar JW, Gaetani R, Garcia JJ, Braden RL, Luo CG, Huang D, DeMaria AN, Omens JH, Christman KL. Evidence for mechanisms underlying the functional benefits of a myocardial matrix hydrogel for post-MI treatment. J Am Coll Cardiol. 2016;67(9):1074–86.

    Article  Google Scholar 

  132. Sarig U, Sarig H, de-Berardinis E, Chaw S-Y, Nguyen EBV, Ramanujam VS, Thang VD, Al-Haddawi M, Liao S, Seliktar D, et al. Natural myocardial ECM patch drives cardiac progenitor based restoration even after scarring. Acta Biomater. 2016;44:209–20.

    Article  CAS  Google Scholar 

  133. Shah M, Kc P, Copeland KM, Liao J, Zhang G. A thin layer of decellularized porcine myocardium for cell delivery. Sci Rep. 2018;8(1):16206.

    Article  CAS  Google Scholar 

  134. Wang Q, Yang H, Bai A, Jiang W, Li X, Wang X, Mao Y, Lu C, Qian R, Guo F, et al. Functional engineered human cardiac patches prepared from nature’s platform improve heart function after acute myocardial infarction. Biomaterials. 2016;105:52–65.

    Article  CAS  Google Scholar 

  135. Kajbafzadeh AM, Tafti SHA, Khorramirouz R, Sabetkish S, Kameli SM, Orangian S, Rabbani S, Oveisi N, Golmohammadi M, Kashani Z. Evaluating the role of autologous mesenchymal stem cell seeded on decellularized pericardium in the treatment of myocardial infarction: an animal study. Cell Tissue Bank. 2017;18(4):527–38.

    Article  Google Scholar 

  136. Kameli SM, Khorramirouz R, Eftekharzadeh S, Fendereski K, Daryabari SS, Tavangar SM, Kajbafzadeh A-M. Application of tissue-engineered pericardial patch in rat models of myocardial infarction. J Biomed Mater Res A. 2018;106(10):2670–8.

    Article  CAS  Google Scholar 

  137. Wan L, Chen Y, Wang Z, Wang W, Schmull S, Dong J, Xue S, Imboden H, Li J. Human heart valve-derived scaffold improves cardiac repair in a murine model of myocardial infarction. Sci Rep. 2017;7:39988.

    Article  CAS  Google Scholar 

  138. Li N, Huang R, Zhang X, Xin Y, Li J, Huang Y, Cui W, Stoltz JF, Zhou Y, Kong Q. Stem cells cardiac patch from decellularized umbilical artery improved heart function after myocardium infarction. Biomed Mater Eng. 2017;28(s1):S87–94.

    CAS  Google Scholar 

  139. Toeg HD, Tiwari-Pandey R, Seymour R, Ahmadi A, Crowe S, Vulesevic B, Suuronen EJ, Ruel M. Injectable small intestine submucosal extracellular matrix in an acute myocardial infarction model. Ann Thorac Surg. 2013;96(5):1686–94.

    Article  Google Scholar 

  140. Sonnenberg SB, Rane AA, Liu CJ, Rao N, Agmon G, Suarez S, Wang R, Munoz A, Bajaj V, Zhang S, et al. Delivery of an engineered HGF fragment in an extracellular matrix-derived hydrogel prevents negative LV remodeling post-myocardial infarction. Biomaterials. 2015;45:56–63.

    Article  CAS  Google Scholar 

  141. Francis MP, Breathwaite E, Bulysheva AA, Varghese F, Rodriguez RU, Dutta S, Semenov I, Ogle R, Huber A, Tichy A-M, et al. Human placenta hydrogel reduces scarring in a rat model of cardiac ischemia and enhances cardiomyocyte and stem cell cultures. Acta Biomater. 2017;52:92–104.

    Article  CAS  Google Scholar 

  142. Mewhort HEM, Turnbull JD, Satriano A, Chow K, Flewitt JA, Andrei A-C, Guzzardi DG, Svystonyuk DA, White JA, Fedak PWM. Epicardial infarct repair with bioinductive extracellular matrix promotes vasculogenesis and myocardial recovery. J Heart Lung Transplant. 2016;35(5):661–70.

    Article  Google Scholar 

  143. Mewhort HEM, Svystonyuk DA, Turnbull JD, Teng G, Belke DD, Guzzardi DG, Park DS, Kang S, Hollenberg MD, Fedak PWM. Bioactive extracellular matrix scaffold promotes adaptive cardiac remodeling and repair. JACC Basic Transl Sci. 2017;2(4):450–64.

    Article  Google Scholar 

  144. Wang L, Meier EM, Tian S, Lei I, Liu L, Xian S, Lam MT, Wang Z. Transplantation of Isl1 + cardiac progenitor cells in small intestinal submucosa improves infarcted heart function. Stem Cell Res Ther. 2017;8(1):230.

    Article  CAS  Google Scholar 

  145. Soucy KG, Smith EF, Monreal G, Rokosh G, Keller BB, Yuan F, Matheny RG, Fallon AM, Lewis BC, Sherwood LC, et al. Feasibility study of particulate extracellular matrix (P-ECM) and left ventricular assist device (HVAD) therapy in chronic ischemic heart failure bovine model. ASAIO J. 2015;61(2):161–9.

    Article  CAS  Google Scholar 

  146. Calgary Uo. Epicardial infarct repair using CorMatrix®-ECM: clinical feasibility study (EIR). National Library of Medicine. https://www.clinicaltrials.gov/ct2/show/NCT02887768?term=NCT02887768&rank=1 (2016). Accessed 07 Jan 2019.

  147. Singelyn JM, DeQuach JA, Seif-Naraghi SB, Littlefield RB, Schup-Magoffin PJ, Christman KL. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials. 2009;30(29):5409–16.

    Article  CAS  Google Scholar 

  148. Singelyn JM, Sundaramurthy P, Johnson TD, Schup-Magoffin PJ, Hu DP, Faulk DM, Wang J, Mayle KM, Bartels K, Salvatore M, et al. Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J Am Coll Cardiol. 2012;59(8):751–63.

    Article  CAS  Google Scholar 

  149. Seif-Naraghi SB, Singelyn JM, Salvatore MA, Osborn KG, Wang JJ, Sampat U, Kwan OL, Strachan GM, Wong J, Schup-Magoffin PJ, et al. Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction. Sci Transl Med. 2013;5(173):173ra25.

    Article  CAS  Google Scholar 

  150. Ventrix I. A phase I, open-label study of the effects of percutaneous administration of an extracellular matrix hydrogel, VentriGel, following myocardial infarction. National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT02305602?term=NCT02305602 (2015). Accessed 15 Feb 2019.

  151. Zhu Y, Matsumura Y, Wagner WR. Ventricular wall biomaterial injection therapy after myocardial infarction: advances in material design, mechanistic insight and early clinical experiences. Biomaterials. 2017;129:37–53.

    Article  CAS  Google Scholar 

  152. Panda NC, Zuckerman ST, Mesubi OO, Rosenbaum DS, Penn MS, Donahue JK, Alsberg E, Laurita KR. Improved conduction and increased cell retention in healed MI using mesenchymal stem cells suspended in alginate hydrogel. J Interv Card Electrophysiol. 2014;41(2):117–27.

    Article  Google Scholar 

  153. Daskalopoulos EP, Vilaeti AD, Barka E, Mantzouratou P, Kouroupis D, Kontonika M, Tourmousoglou C, Papalois A, Pantos C, Blankesteijn WM, et al. Attenuation of post-infarction remodeling in rats by sustained myocardial growth hormone administration. Growth Factors 2015;33(4):250–8.

    Article  CAS  Google Scholar 

  154. Kontonika M, Barka E, Roumpi M, La Rocca V, Lekkas P, Daskalopoulos EP, Vilaeti AD, Baltogiannis GG, Vlahos AP, Agathopoulos S, et al. Prolonged intra-myocardial growth hormone administration ameliorates post-infarction electrophysiologic remodeling in rats. Growth Factors 2017;35(1):1–11.

    Article  CAS  Google Scholar 

  155. Fang R, Qiao S, Liu Y, Meng Q, Chen X, Song B, Hou X, Tian W. Sustained co-delivery of BIO and IGF-1 by a novel hybrid hydrogel system to stimulate endogenous cardiac repair in myocardial infarcted rat hearts. Int J Nanomed. 2015;10:4691–703.

    Article  CAS  Google Scholar 

  156. Rodness J, Mihic A, Miyagi Y, Wu J, Weisel RD, Li R-K. VEGF-loaded microsphere patch for local protein delivery to the ischemic heart. Acta Biomater. 2016;45:169–81.

    Article  CAS  Google Scholar 

  157. Singh RD, Hillestad ML, Livia C, Li M, Alekseev AE, Witt TA, Stalboerger PG, Yamada S, Terzic A, Behfar A. M3RNA drives targeted gene delivery in acute myocardial infarction. Tissue Eng Part A. 2018;25(1-2):145-58.

    Article  CAS  Google Scholar 

  158. Leor J, Tuvia S, Guetta V, Manczur F, Castel D, Willenz U, Petneházy Ö, Landa N, Feinberg MS, Konen E, et al. Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in swine. J Am Coll Cardiol. 2009;54(11):1014–23.

    Article  Google Scholar 

  159. Frey N, Linke A, Süselbeck T, Müller-Ehmsen J, Vermeersch P, Schoors D, Rosenberg M, Bea F, Tuvia S, Leor J. Intracoronary delivery of injectable bioabsorbable scaffold (IK-5001) to treat left ventricular remodeling after ST-elevation myocardial infarction. Circ Cardiovasc Interv. 2014;7(6):806–12.

    Article  Google Scholar 

  160. Rao SV, Zeymer U, Douglas PS, Al-Khalidi H, Liu J, Gibson CM, Harrison RW, Joseph DS, Heyrman R, Krucoff MW. A randomized, double-blind, placebo-controlled trial to evaluate the safety and effectiveness of intracoronary application of a novel bioabsorbable cardiac matrix for the prevention of ventricular remodeling after large ST-segment elevation myocardial infarction: rationale and design of the PRESERVATION I trial. Am Heart J. 2015;170(5):929–37.

    Article  CAS  Google Scholar 

  161. McCune C, McKavanagh P, Menown IBA. A review of the key clinical trials of 2015: results and implications. Cardiol Ther. 2016;5(2):109–32.

    Article  Google Scholar 

  162. Sabbah HN, Wang M, Gupta RC, Rastogi S, Ilsar I, Sabbah MS, Kohli S, Helgerson S, Lee RJ. Augmentation of left ventricular wall thickness with alginate hydrogel implants improves left ventricular function and prevents progressive remodeling in dogs with chronic heart failure. JACC Heart Fail. 2013;1(3):252–8.

    Article  Google Scholar 

  163. Lee LC, Wall ST, Klepach D, Ge L, Zhang Z, Lee RJ, Hinson A, Gorman JH, Gorman RC, Guccione JM. Algisyl-LVR™ with coronary artery bypass grafting reduces left ventricular wall stress and improves function in the failing human heart. Int J Cardiol. 2013;168(3):2022–8.

    Article  Google Scholar 

  164. Mann DL, Lee RJ, Coats AJS, Neagoe G, Dragomir D, Pusineri E, Piredda M, Bettari L, Kirwan B-A, Dowling R, et al. One-year follow-up results from AUGMENT-HF: a multicentre randomized controlled clinical trial of the efficacy of left ventricular augmentation with algisyl in the treatment of heart failure. Eur J Heart Fail. 2016;18(3):314–25.

    Article  CAS  Google Scholar 

  165. Henning RJ, Khan A, Jimenez E. Chitosan hydrogels significantly limit left ventricular infarction and remodeling and preserve myocardial contractility. J Surg Res. 2016;201(2):490–7.

    Article  CAS  Google Scholar 

  166. Xu B, Li Y, Deng B, Liu X, Wang L, Zhu Q-L. Chitosan hydrogel improves mesenchymal stem cell transplant survival and cardiac function following myocardial infarction in rats. Exp Ther Med. 2017;13(2):588–94.

    Article  CAS  Google Scholar 

  167. Hardy B, Battler A, Weiss C, Kudasi O, Raiter A. Therapeutic angiogenesis of mouse hind limb ischemia by novel peptide activating GRP78 receptor on endothelial cells. Biochem Pharmacol. 2008;75(4):891–9.

    Article  CAS  Google Scholar 

  168. Shu Y, Hao T, Yao F, Qian Y, Wang Y, Yang B, Li J, Wang C. RoY peptide-modified chitosan-based hydrogel to improve angiogenesis and cardiac repair under hypoxia. ACS Appl Mater Interfaces. 2015;7(12):6505–17.

    Article  CAS  Google Scholar 

  169. Chen J, Zhan Y, Wang Y, Han D, Tao B, Luo Z, Ma S, Wang Q, Li X, Fan L, et al. Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post-myocardial infarction in rats. Acta Biomater. 2018;80:154–68.

    Google Scholar 

  170. Wang X, Wang L, Wu Q, Bao F, Yang H, Qiu X, Chang J. Chitosan/calcium silicate cardiac patch stimulates cardiomyocyte activity and myocardial performance after infarction by synergistic effect of bioactive ions and aligned nanostructure. ACS Appl Mater Interfaces. 2018;11(1):1449-68.

    Article  CAS  Google Scholar 

  171. Cui Z, Ni NC, Wu J, Du GQ, He S, Yau TM, Weisel RD, Sung HW, Li RK. Polypyrrole-chitosan conductive biomaterial synchronizes cardiomyocyte contraction and improves myocardial electrical impulse propagation. Theranostics. 2018;8(10):2752–64.

    Article  CAS  Google Scholar 

  172. Koutsopoulos S. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: progress, design guidelines, and applications. J Biomed Mater Res A. 2016;104(4):1002–16.

    Article  CAS  Google Scholar 

  173. Cui H, Webber MJ, Stupp SI. Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers. 2010;94(1):1–18.

    Article  CAS  Google Scholar 

  174. Li H, Gao J, Shang Y, Hua Y, Ye M, Yang Z, Ou C, Chen M. Folic acid derived hydrogel enhances the survival and promotes therapeutic efficacy of iPS cells for acute myocardial infarction. ACS Appl Mater Interfaces. 2018;10(29):24459–68

    Article  CAS  Google Scholar 

  175. Ichihara Y, Kaneko M, Yamahara K, Koulouroudias M, Sato N, Uppal R, Yamazaki K, Saito S, Suzuki K. Self-assembling peptide hydrogel enables instant epicardial coating of the heart with mesenchymal stromal cells for the treatment of heart failure. Biomaterials. 2018;154:12–23.

    Article  CAS  Google Scholar 

  176. Boopathy AV, Martinez MD, Smith AW, Brown ME, García AJ, Davis ME. Intramyocardial delivery of notch ligand-containing hydrogels improves cardiac function and angiogenesis following infarction. Tissue Eng Part A. 2015;21(17–18):2315–22.

    Article  CAS  Google Scholar 

  177. Martínez-Ramos C, Rodríguez-Pérez E, Garnes MP, Chachques JC, Moratal D, Vallés-Lluch A, Monleón Pradas M. Design and assembly procedures for large-sized biohybrid scaffolds as patches for myocardial infarct. Tissue Eng Part C Methods. 2014;20(10):817–27.

    Article  CAS  Google Scholar 

  178. Lamboni L, Gauthier M, Yang G, Wang Q. Silk sericin: a versatile material for tissue engineering and drug delivery. Biotechnol Adv. 2015;33(8):1855–67.

    Article  CAS  Google Scholar 

  179. Song Y, Zhang C, Zhang J, Sun N, Huang K, Li H, Wang Z, Huang K, Wang L. An injectable silk sericin hydrogel promotes cardiac functional recovery after ischemic myocardial infarction. Acta Biomater. 2016;41:210–23.

    Article  CAS  Google Scholar 

  180. Malki M, Fleischer S, Shapira A, Dvir T. Gold nanorod-based engineered cardiac patch for suture-free engraftment by near IR. Nano Lett. 2018;18(7):4069–73.

    Article  CAS  Google Scholar 

  181. Rabbani S, Soleimani M, Imani M, Sahebjam M, Ghiaseddin A, Nassiri SM, Majd Ardakani J, Tajik Rostami M, Jalali A, Mousanassab B, et al. Regenerating heart using a novel compound and human Wharton jelly mesenchymal stem cells. Arch Med Res. 2017;48(3):228–37.

    Article  CAS  Google Scholar 

  182. Chow A, Stuckey DJ, Kidher E, Rocco M, Jabbour RJ, Mansfield CA, Darzi A, Harding SE, Stevens MM, Athanasiou T. Human induced pluripotent stem cell-derived cardiomyocyte encapsulating bioactive hydrogels improve rat heart function post myocardial infarction. Stem Cell Rep. 2017;9(5):1415–22.

    Article  CAS  Google Scholar 

  183. Melhem M, Jensen T, Reinkensmeyer L, Knapp L, Flewellyn J, Schook L. A hydrogel construct and fibrin-based glue approach to deliver therapeutics in a murine myocardial infarction model. J Vis Exp. 2015;100:e52562.

    Google Scholar 

  184. Rabbani S, Soleimani M, Sahebjam M, Imani M, Haeri A, Ghiaseddin A, Nassiri SM, Majd Ardakani J, Tajik Rostami M, Jalali A, et al. Simultaneous delivery of Wharton’s jelly mesenchymal stem cells and insulin-like growth factor-1 in acute myocardial infarction. Iran J Pharm Res. 2018;17(2):426–41.

    Google Scholar 

  185. Steele AN, Cai L, Truong VN, Edwards BB, Goldstone AB, Eskandari A, Mitchell AC, Marquardt LM, Foster AA, Cochran JR, et al. A novel protein-engineered hepatocyte growth factor analog released via a shear-thinning injectable hydrogel enhances post-infarction ventricular function. Biotechnol Bioeng. 2017;114(10):2379–89.

    Article  CAS  Google Scholar 

  186. Ciuffreda MC, Malpasso G, Chokoza C, Bezuidenhout D, Goetsch KP, Mura M, Pisano F, Davies NH, Gnecchi M. Synthetic extracellular matrix mimic hydrogel improves efficacy of mesenchymal stromal cell therapy for ischemic cardiomyopathy. Acta Biomater. 2018;70:71–83.

    Article  CAS  Google Scholar 

  187. Woodruff MA, Hutmacher DW. The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci. 2010;35(10):1217–56.

    Article  CAS  Google Scholar 

  188. Soler-Botija C, Bagó JR, Llucià-Valldeperas A, Vallés-Lluch A, Castells-Sala C, Martínez-Ramos C, Fernández-Muiños T, Chachques JC, Pradas MM, Semino CE, et al. Engineered 3D bioimplants using elastomeric scaffold, self-assembling peptide hydrogel, and adipose tissue-derived progenitor cells for cardiac regeneration. Am J Transl Res. 2014;6(3):291–301.

    Google Scholar 

  189. Chung T-W, Lo H-Y, Chou T-H, Chen J-H, Wang S-S. Promoting cardiomyogenesis of hBMSC with a forming self-assembly hBMSC microtissues/HA-GRGD/SF-PCL cardiac patch is mediated by the synergistic functions of HA-GRGD. Macromol Biosci. 2017;17(3):1600173.

    Article  CAS  Google Scholar 

  190. Zhu H, Jiang X, Li X, Hu M, Wan W, Wen Y, He Y, Zheng X. Intramyocardial delivery of VEGF165 via a novel biodegradable hydrogel induces angiogenesis and improves cardiac function after rat myocardial infarction. Heart Vessels. 2016;31(6):963–75.

    Article  Google Scholar 

  191. Zhu H, Li X, Yuan M, Wan W, Hu M, Wang X, Jiang X. Intramyocardial delivery of bFGF with a biodegradable and thermosensitive hydrogel improves angiogenesis and cardio-protection in infarcted myocardium. Exp Ther Med. 2017;14(4):3609–15.

    Article  CAS  Google Scholar 

  192. Zeng X, Zou L, Levine RA, Guerrero JL, Handschumacher MD, Sullivan SM, Braithwaite GJC, Stone JR, Solis J, Muratoglu OK, et al. Efficacy of polymer injection for ischemic mitral regurgitation: persistent reduction of mitral regurgitation and attenuation of left ventricular remodeling. JACC Cardiovasc Interv. 2015;8(2):355–63.

    Google Scholar 

  193. Tang J, Wang J, Huang K, Ye Y, Su T, Qiao L, Hensley MT, Caranasos TG, Zhang J, Gu Z, et al. Cardiac cell-integrated microneedle patch for treating myocardial infarction. Sci Adv. 2018;4(11):eaat9365.

    Article  CAS  Google Scholar 

  194. Jamaiyar A, Wan W, Ohanyan V, Enrick M, Janota D, Cumpston D, Song H, Stevanov K, Kolz CL, Hakobyan T, et al. Alignment of inducible vascular progenitor cells on a micro-bundle scaffold improves cardiac repair following myocardial infarction. Basic Res Cardiol. 2017;112(4):41.

    Google Scholar 

  195. Spadaccio C, Nappi F, De Marco F, Sedati P, Taffon C, Nenna A, Crescenzi A, Chello M, Trombetta M, Gambardella I, et al. Implantation of a poly-l-lactide GCSF-functionalized scaffold in a model of chronic myocardial infarction. J Cardiovasc Transl Res. 2017;10(1):47–65.

    Article  Google Scholar 

  196. Zhu Y, Wood NA, Fok K, Yoshizumi T, Park DW, Jiang H, Schwartzman DS, Zenati MA, Uchibori T, Wagner WR, et al. Design of a coupled thermoresponsive hydrogel and robotic system for postinfarct biomaterial injection therapy. Ann Thorac Surg. 2016;102(3):780–6.

    Article  Google Scholar 

  197. Zhu Y, Matsumura Y, Velayutham M, Foley LM, Hitchens TK, Wagner WR. Reactive oxygen species scavenging with a biodegradable, thermally responsive hydrogel compatible with soft tissue injection. Biomaterials. 2018;177:98–112.

    Article  CAS  Google Scholar 

  198. Yoshizumi T, Zhu Y, Jiang H, D’Amore A, Sakaguchi H, Tchao J, Tobita K, Wagner WR. Timing effect of intramyocardial hydrogel injection for positively impacting left ventricular remodeling after myocardial infarction. Biomaterials. 2016;83:182–93.

    Article  CAS  Google Scholar 

  199. Shiekh PA, Singh A, Kumar A. Oxygen-releasing antioxidant cryogel scaffolds with sustained oxygen delivery for tissue engineering applications. ACS Appl Mater Interfaces. 2018;10(22):18458–69.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Collaborative Research Grant from the Canadian Institutes of Health Research (CIHR) and the Natural Sciences and Engineering Research Council (NSERC) (CPG-158280), and a CIHR operating grant (MOP-77536).

Disclosure

All authors have read and approved the final version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik J. Suuronen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sedlakova, V., Ruel, M., Suuronen, E.J. (2019). Therapeutic Use of Bioengineered Materials for Myocardial Infarction. In: Alarcon, E., Ahumada, M. (eds) Nanoengineering Materials for Biomedical Uses. Springer, Cham. https://doi.org/10.1007/978-3-030-31261-9_9

Download citation

Publish with us

Policies and ethics